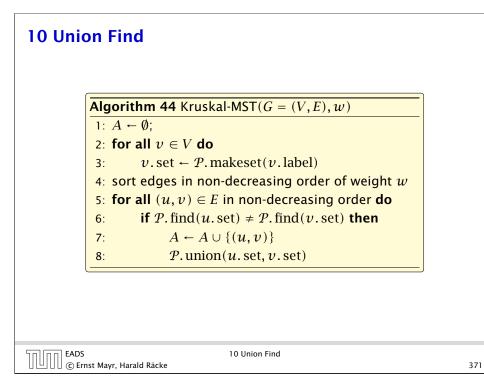
10 Union Find

Union Find Data Structure \mathcal{P} : Maintains a partition of disjoint sets over elements.

- P. makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- *P*. find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- *P*. union(x, y): Given two elements x, and y that are currently in sets S_x and S_y, respectively, the function replaces S_x and S_y by S_x ∪ S_y and returns an identifier for the new set.

חחוחר	EADS	
	© Ernst Mayr, Harald Räcke	

369



10 Union Find

Applications:

- Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.
- Kruskals Minimum Spanning Tree Algorithm

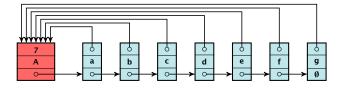
EADS © Ernst Mayr, Harald Räcke

10 Union Find

370

List Implementation

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- The head of the list contains the identifier for the set and a field that stores the size of the set.



- makeset(x) can be performed in constant time.
- find(x) can be performed in constant time.

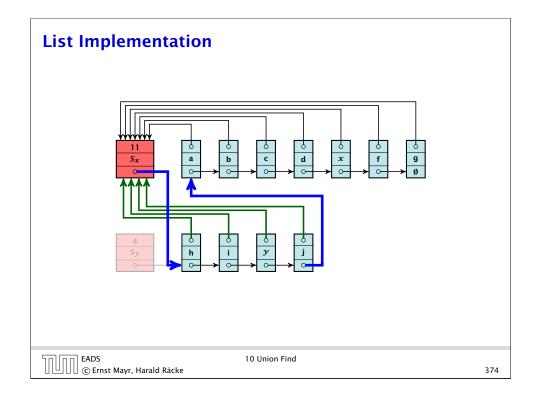
EADS © Ernst Mayr, Harald Räcke

List Implementation

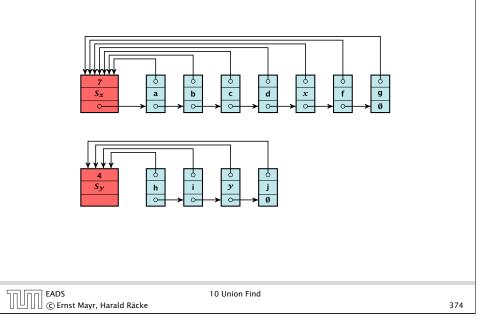
union(x, y)

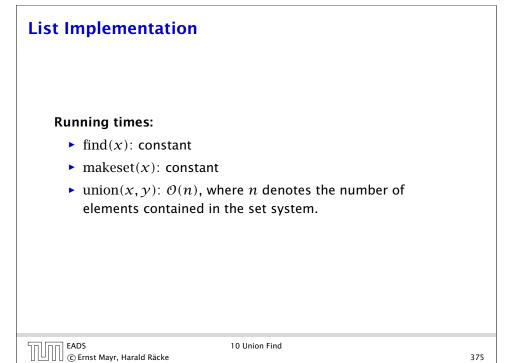
- Determine sets S_{χ} and S_{γ} .
- Traverse the smaller list (say S_{γ}), and change all backward pointers to the head of list S_{γ} .
- Insert list S_{γ} at the head of S_{χ} .
- Adjust the size-field of list S_x .
- Time: $\min\{|S_x|, |S_y|\}$.

הח EADS	10 Union Find	
UUUC Ernst Mayr, Harald Räcke		373



List Implementation





List Implementation

Lemma 35

The list implementation for the ADT union find fulfills the following amortized time bounds:

- find(x): $\mathcal{O}(1)$.
- makeset(x): $\mathcal{O}(\log n)$.
- union(x, y): $\mathcal{O}(1)$.

50)[00	EADS © Ernst Mayr, Harald Räcke
	© Ernst Mayr, Harald Räcke

10 Union Find

List Implementation

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $\mathcal{O}(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.

The Accounting Method for Amortized Time Bounds

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

```
EADS
C Ernst Mayr, Harald Räcke
```

10 Union Find

377

List Implementation

makeset(x) : The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $O(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

union(x, y):

EADS

- If $S_{\chi} = S_{\gamma}$ the cost is constant; no bank accounts change.
- Otw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|\})$.
- Assume wlog. that S_x is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot |S_x|$.

10 Union Find

• Charge c to every element in set S_x .

378

List Implementation

Lemma 36

An element is charged at most $\lfloor \log_2 n \rfloor$ times, where *n* is the total number of elements in the set system.

Proof.

Whenever an element x is charged the number of elements in x's set doubles. This can happen at most $\lfloor \log n \rfloor$ times.

EADS © Ernst Mayr, Harald Räcke 10 Union Find

Implementation via Trees

makeset(x)

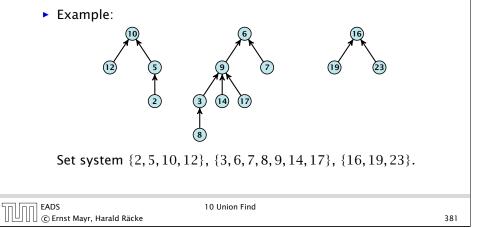
- Create a singleton tree. Return pointer to the root.
- Time: $\mathcal{O}(1)$.

find(x)

- Start at element x in the tree. Go upwards until you reach the root.
- Time: O(level(x)), where level(x) is the distance of element x to the root in its tree. Not constant.

Implementation via Trees

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.



Implementation via Trees

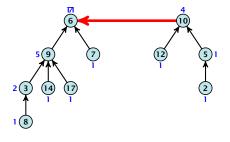
To support union we store the size of a tree in its root.

union(x, y)

EADS

C Ernst Mayr. Harald Räcke

- ▶ Perform $a \leftarrow \operatorname{find}(x)$; $b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



► Time: constant for link(*a*, *b*) plus two find-operations.

Implementation via Trees

Lemma 37

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

Proof.

- When we attach a tree with root c to become a child of a tree with root p, then size(p) ≥ 2 size(c), where size denotes the value of the size-field right after the operation.
- After that the value of size(c) stays fixed, while the value of size(p) may still increase.
- Hence, at any point in time a tree fulfills $size(p) \ge 2 size(c)$, for any pair of nodes (p, c), where p is a parent of c.

384

EADS © Ernst Mayr, Harald Räcke	10 Union Find	

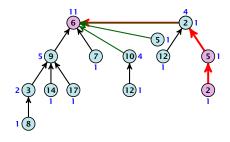
Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on the running time. It can still happen that a find-operation takes time $\mathcal{O}(\log n)$.

Path Compression

find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



• Note that the size-fields now only give an upper bound on the size of a sub-tree.

EADS © Ernst Mayr, Harald Räcke	10 Union Find	
🛛 🕒 🗋 😨 Ernst Mayr, Harald Räcke		385

Amortized Analysis

Definitions:

- size(v): the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).
- ▶ rank(v): $\lfloor \log(size(v)) \rfloor$.
- ▶ \Rightarrow size(v) ≥ $2^{\operatorname{rank}(v)}$.

Lemma 38

EADS

The rank of a parent must be strictly larger than the rank of a child.

10 Union Find

Amortized Analysis

Lemma 39

There are at most $n/2^s$ nodes of rank s.

Proof.

- Let's say a node v sees the rank s node x if v is in x's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contains v during the running time of the algorithm is a strictly increasing sequence.
- Hence, every node *sees* at most one rank *s* node, but every rank *s* node is seen by at least 2^s different nodes.

EADS	10 Union Find
EADS © Ernst Mayr, Harald Räcke	

Amortized AnalysisIn the following we assume $n \ge 3$.rank-group:• A node with rank rank(v) is in rank group $\log^*(rank(v))$.• The rank-group g = 0 contains only nodes with rank 0 or rank 1.• A rank group $g \ge 1$ contains ranks $tow(g-1) + 1, \dots, tow(g)$.• The maximum non-empty rank group is $log^*(\lfloor \log n \rfloor) \le log^*(n) - 1$ (which holds for $n \ge 3$).• Hence, the total number of rank-groups is at most $log^* n$.

Amortized Analysis

We define

and

$$\log^*(n) := \min\{i \mid \text{tow}(i) \ge n\}$$

Theorem 40

Union find with path compression fulfills the following amortized running times:

- makeset(x) : $\mathcal{O}(\log^*(n))$
- find(x) : $\mathcal{O}(\log^*(n))$
- union(x, y) : $\mathcal{O}(\log^*(n))$

EADS © Ernst Mayr, Harald Räcke	10 Union Find	
🛛 🛄 🗋 🕲 Ernst Mayr, Harald Räcke		389

Amortized Analysis

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent[v] as follows:

- If parent[v] is the root we charge the cost to the find-account.
- If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.
- Otherwise we charge the cost to the find-account.

390

Observations:

- ► A find-account is charged at most log^{*}(n) times (once for the root and at most log^{*}(n) - 1 times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. ⇒ v will never be charged again.
- The total charge made to a node in rank-group g is at most tow(g) - tow(g − 1) ≤ tow(g).

EADS 10 Union Find © Ernst Mayr, Harald Räcke	392

For
$$g \ge 1$$
 we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\text{tow}(g)-\text{tow}(g-1)-1} \frac{1}{2^s}$$

$$\le \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} \le \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

$$\le \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)} \cdot$$
Hence,

$$\sum_{g} n(g) \text{ tow}(g) \le n(0) \text{ tow}(0) + \sum_{g\ge 1} n(g) \text{ tow}(g) \le n \log^*(n)$$

$$\boxed{\text{LADS}} = \frac{10 \text{ Union Find}}{0 \text{ Emst Mayr, Harald Räcke}}$$
10 Union Find

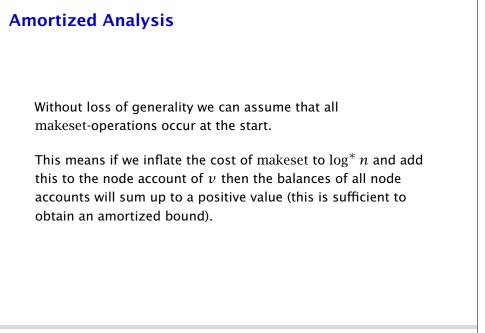
What is the total charge made to nodes?

The total charge is at most

$$\sum_{g} n(g) \cdot \operatorname{tow}(g)$$
,

where n(g) is the number of nodes in group g.

הח EADS	10 Union Find	
UUUC Ernst Mayr, Haral	ld Räcke	393



EADS © Ernst Mayr, Harald Räcke The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m, n))$, where $\alpha(m, n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

הח [הח] EADS	10 Union Find	
UUUC Ernst Mayr, Harald Räcke		396

