

Algorithm 1 BiMatch(G, match)	graph $G = (S \cup S', E);$
1: for $x \in V$ do mate[x] $\leftarrow 0$;	$S = \{1,, n\};$
2: $r \leftarrow 0$; free $\leftarrow n$;	$S = \{1', \ldots, n'\}$
3: while $free \ge 1$ and $r < n$ do	initial matching empty
4: $r \leftarrow r + 1$	
5: if $mate[r] = 0$ then	<i>free</i> : number of
6: for $i = 1$ to m do $parent[i'] \leftarrow 0$	unmatched hodes in S
7: $Q \leftarrow \emptyset$; <i>Q</i> . append(<i>r</i>); <i>aug</i> \leftarrow false;	r: root of current tree
8: while $aug = false$ and $Q \neq \emptyset$ do	if a is unneather d
9: $x \leftarrow Q.$ dequeue();	If γ is unmatched
10: if $\exists y \in A_x$: <i>mate</i> [y] = 0 then	start tree construction
11: augment(<i>mate</i> , <i>parent</i> , <i>y</i>);	initialize empty tree
12: $aug \leftarrow true; free \leftarrow free - 1;$	no augman nath hut
13: else	no augmen. path but
14: if $parent[y] = 0$ then	unexammed leaves
15: $parent[y] \leftarrow x;$	free neighbour found
16: $Q.enqueue(y);$	add naw nada a to O

How to find an augmenting path?

Construct an alternating tree.

21 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

- Input: undirected, bipartite graph $G = L \cup R, E$.
- an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

• assume that |L| = |R| = n

EADS

EADS © Ernst Mayr, Harald Räcke

• assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$

Weighted Bipartite Matching

Theorem 97 (Halls Theorem)

A bipartite graph $G = (L \cup R, E)$ has a perfect matching if and only if for all sets $S \subseteq L$, $|\Gamma(S)| \ge |S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

EADS	21 Weighted Bipartite
🛛 💾 🗋 🕻 🖸 Ernst Mayr, Harald Räcke	

Algorithm Outline

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \ge 0$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

Matching

- Let H(x) denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting x, i.e. edges
 e = (u, v) for which w_e = (u, v).
- Try to compute a perfect matching in the subgraph H(x). If you are successful you found an optimal matching.

559

557

Halls Theorem

Proof:

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- ⇒ For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let *S* denote a minimum cut and let $L_S \cong L \cap S$ and $R_S \cong R \cap S$ denote the portion of *S* inside *L* and *R*, respectively.
 - Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - This gives $R_S \ge |\Gamma(L_S)|$.
 - The size of the cut is $|L| |L_S| + |R_S|$.
 - Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

EADS	21 Weighted Bipartite Matching	
] 🛄 🛛 🕜 Ernst Mayr, Harald Räcke		558

Algorithm Outline Reason: • The weight of your matching M^* is $\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v .$ • Any other matching M has $\sum_{(u,v)\in M} w_{(u,v)} \le \sum_{(u,v)\in M} (x_u + x_v) \le \sum_v x_v .$

 $x_u + x_v \ge w_e$ for every edge e = (u, v).

Algorithm Outline

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

Soloo EADS	21 Weighted Bipartite Matching	
🛛 🛄 🔲 🕜 Ernst Mayr, Harald Räcke	5.5	561

Changing Node Weights

Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.

- Total node-weight decreases.
- Only edges from S to R − Γ(S) decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in H(x
), and hence would go between S and Γ(S)) we can do this decrement for small enough δ > 0 until a new edge gets tight.

EADS	21 Weighted Bipartite Matching
🛛 🛄 🗍 🖾 🕲 Ernst Mayr, Harald Räcke	

Analysis

How many iterations do we need?

One reweighting step increases the number of edges out of S by at least one.

 $S = \delta$

- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in *S* (we will show that we can always find *S* and a matching such that this holds).
- ► This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L S and $R \Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

 $+\delta \Gamma(S)$

562

Analysis

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

EADS © Ernst Mayr, Harald Räcke	21 Weighted Bipartite Matching
-	

Analysis

- The current matching does not have any edges from V_{odd} to outside of L \ V_{even} (edges that may possibly deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd}. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time O(n²) (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

Analysis

How do we find S?

EADS © Ernst Mayr, Harald Räcke

- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex *u*.
 Hence, |V_{odd}| = |Γ(V_{even})| < |V_{even}|, and all odd vertices are saturated in the current matching.

באס (הח EADS	21 Weighted Bipartite Matching	
🛛 💾 🗋 🕻 🕲 Ernst Mayr, Harald Räcke		566

We call one iteration of the repeat-loop a phase of the algorithm.

565