
How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 3:
y is already contained
in T as an odd vertex

ignore successor y

EADS 20 Augmenting Paths for Matchings

c© Ernst Mayr, Harald Räcke 553

How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

does not happen in
bipartite graphs

EADS 20 Augmenting Paths for Matchings

c© Ernst Mayr, Harald Räcke 554

Algorithm 1 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to m do parent[i′]← 0
7: Q ← �; Q. append(r); aug ← false;
8: while aug = false and Q ≠ � do
9: x ← Q.dequeue();

10: if ∃y ∈ Ax: mate[y] = 0 then
11: augment(mate,parent, y);
12: aug ← true; free← free− 1;
13: else
14: if parent[y] = 0 then
15: parent[y]← x;
16: Q. enqueue(y);

graph G = (S ∪ S′, E);
S = {1, . . . , n};
S = {1′, . . . , n′}
initial matching empty

free: number of
unmatched nodes in S

r : root of current tree

if r is unmatched
start tree construction

initialize empty tree

no augmen. path but
unexamined leaves

free neighbour found

add new node y to Q

EADS 20 Augmenting Paths for Matchings

c© Ernst Mayr, Harald Räcke 555

21 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

ñ Input: undirected, bipartite graph G = L∪ R,E.

ñ an edge e = (`, r) has weight we ≥ 0

ñ find a matching of maximum weight, where the weight of a

matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

ñ assume that |L| = |R| = n
ñ assume that there is an edge between every pair of nodes

(`, r) ∈ V × V

EADS 21 Weighted Bipartite Matching

c© Ernst Mayr, Harald Räcke 556

Weighted Bipartite Matching

Theorem 97 (Halls Theorem)

A bipartite graph G = (L∪ R,E) has a perfect matching if and

only if for all sets S ⊆ L, |Γ(S)| ≥ |S|, where Γ(S) denotes the set

of nodes in R that have a neighbour in S.

EADS 21 Weighted Bipartite Matching

c© Ernst Mayr, Harald Räcke 557

Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.

ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

EADS 21 Weighted Bipartite Matching

c© Ernst Mayr, Harald Räcke 558

Algorithm Outline

Idea:

We introduce a node weighting ~x. Let for a node v ∈ V , xv ≥ 0

denote the weight of node v.

ñ Suppose that the node weights dominate the edge-weights in

the following sense:

xu + xv ≥ we for every edge e = (u,v).

ñ Let H(~x) denote the subgraph of G that only contains edges

that are tight w.r.t. the node weighting ~x, i.e. edges

e = (u,v) for which we = (u,v).
ñ Try to compute a perfect matching in the subgraph H(~x). If

you are successful you found an optimal matching.

EADS 21 Weighted Bipartite Matching

c© Ernst Mayr, Harald Räcke 559

Algorithm Outline

Reason:

ñ The weight of your matching M∗ is∑
(u,v)∈M∗

w(u,v) =
∑

(u,v)∈M∗
(xu + xv) =

∑
v
xv .

ñ Any other matching M has∑
(u,v)∈M

w(u,v) ≤
∑

(u,v)∈M
(xu + xv) ≤

∑
v
xv .

EADS 21 Weighted Bipartite Matching

c© Ernst Mayr, Harald Räcke 560

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S ⊆ L, with

|Γ(S)| < |S|, where Γ denotes the neighbourhood w.r.t. the

subgraph H(~x).

Idea: reweight such that:

ñ the total weight assigned to nodes decreases

ñ the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an

optimal solution (we analyze the running time later).

EADS 21 Weighted Bipartite Matching

c© Ernst Mayr, Harald Räcke 561

Changing Node Weights

Increase node-weights in Γ(S) by +δ, and decrease the

node-weights in S by −δ.

ñ Total node-weight decreases.

ñ Only edges from S to R − Γ(S)
decrease in their weight.

ñ Since, none of these edges is

tight (otw. the edge would be

contained in H(~x), and hence

would go between S and Γ(S))
we can do this decrement for

small enough δ > 0 until a new

edge gets tight.
L R

S

Γ(S)

−δ

+δ

EADS 21 Weighted Bipartite Matching

c© Ernst Mayr, Harald Räcke 562

Weighted Bipartite Matching

Edges not drawn have weight 0.

δ = 1 δ = 1

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1

2

5

3

3

EADS 21 Weighted Bipartite Matching

c© Ernst Mayr, Harald Räcke 563

Analysis

How many iterations do we need?

ñ One reweighting step increases the number of edges out of S
by at least one.

ñ Assume that we have a maximum matching that saturates

the set Γ(S), in the sense that every node in Γ(S) is matched

to a node in S (we will show that we can always find S and a

matching such that this holds).

ñ This matching is still contained in the new graph, because all

its edges either go between Γ(S) and S or between L− S and

R − Γ(S).
ñ Hence, reweighting does not decrease the size of a

maximum matching in the tight sub-graph.

EADS 21 Weighted Bipartite Matching

c© Ernst Mayr, Harald Räcke 564

Analysis

ñ We will show that after at most n reweighting steps the size

of the maximum matching can be increased by finding an

augmenting path.

ñ This gives a polynomial running time.

EADS 21 Weighted Bipartite Matching

c© Ernst Mayr, Harald Räcke 565

Analysis

How do we find S?

ñ Start on the left and compute an alternating tree, starting at

any free node u.

ñ If this construction stops, there is no perfect matching in the

tight subgraph (because for a perfect matching we need to

find an augmenting path starting at u).

ñ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

ñ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.

EADS 21 Weighted Bipartite Matching

c© Ernst Mayr, Harald Räcke 566

Analysis

ñ The current matching does not have any edges from Vodd to

outside of L \ Veven (edges that may possibly deleted by

changing weights).

ñ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

ñ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

ñ An augmentation takes at most O(n) time.

ñ In total we otain a running time of O(n4).
ñ A more careful implementation of the algorithm obtains a

running time of O(n3).

EADS 21 Weighted Bipartite Matching

c© Ernst Mayr, Harald Räcke 567

A Fast Matching Algorithm

Algorithm 54 Bimatch-Hopcroft-Karp(G)
1: M ← �
2: repeat

3: let P = {P1, . . . , Pk} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.

5: M ← M ⊕ (P1 ∪ · · · ∪ Pk)
6: until P = �
7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

EADS 22 The Hopcroft-Karp Algorithm

c© Ernst Mayr, Harald Räcke 568

