21 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

- Input: undirected, bipartite graph $G = L \cup R, E$.
- an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

- assume that |L| = |R| = n
- ► assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$

Weighted Bipartite Matching

Theorem 97 (Halls Theorem)

A bipartite graph $G = (L \cup R, E)$ has a perfect matching if and only if for all sets $S \subseteq L$, $|\Gamma(S)| \ge |S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

Halls Theorem

Proof:

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- ⇒ For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let *S* denote a minimum cut and let $L_S \cong L \cap S$ and $R_S \cong R \cap S$ denote the portion of *S* inside *L* and *R*, respectively.
 - Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - This gives $R_S \ge |\Gamma(L_S)|$.
 - The size of the cut is $|L| |L_S| + |R_S|$.
 - Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

Algorithm Outline

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \ge 0$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

 $x_u + x_v \ge w_e$ for every edge e = (u, v).

- ► Let H(x) denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting x, i.e. edges e = (u, v) for which w_e = (u, v).
- Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Algorithm Outline

Reason:

• The weight of your matching M^* is

$$\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v .$$

• Any other matching *M* has

$$\sum_{(u,v)\in M} w_{(u,v)} \leq \sum_{(u,v)\in M} (x_u + x_v) \leq \sum_v x_v .$$

21 Weighted Bipartite Matching

Algorithm Outline

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

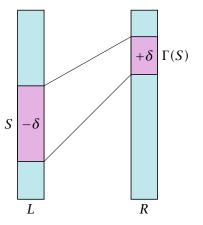
- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

Changing Node Weights

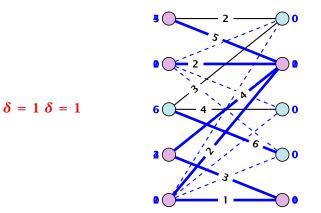
Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.

- Total node-weight decreases.
- Only edges from S to R Γ(S) decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in *H*(*x*), and hence would go between *S* and Γ(*S*)) we can do this decrement for small enough δ > 0 until a new edge gets tight.



Weighted Bipartite Matching

Edges not drawn have weight 0.



21 Weighted Bipartite Matching

How many iterations do we need?

- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in *S* (we will show that we can always find *S* and a matching such that this holds).
- ► This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L S and $R \Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

How do we find S?

- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at u).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- ► All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex *u*. Hence, |V_{odd}| = |Γ(V_{even})| < |V_{even}|, and all odd vertices are saturated in the current matching.

- ► The current matching does not have any edges from V_{odd} to outside of L \ V_{even} (edges that may possibly deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd}. After at most n reweights we can do an augmentation.
- ► A reweighting can be trivially performed in time O(n²) (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.