
7.3 AVL-Trees

Definition 15
AVL-trees are binary search trees that fulfill the following balance

condition. For every node v

|height(left sub-tree(v))− height(right sub-tree(v))| ≤ 1 .

Lemma 16
An AVL-tree of height h contains at least Fh+2 − 1 and at most

2h − 1 internal nodes, where Fn is the n-th Fibonacci number

(F0 = 0, F1 = 1), and the height is the maximal number of edges

from the root to an (empty) dummy leaf.

EADS

c© Ernst Mayr, Harald Räcke 144

Proof.
The upper bound is clear, as a binary tree of height h can only

contain
h−1∑
j=0

2j = 2h − 1

internal nodes.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 145

Proof (cont.)

Induction (base cases):

1. an AVL-tree of height h = 1 contains at least one internal

node, 1 ≥ F3 − 1 = 2− 1 = 1.

2. an AVL tree of height h = 2 contains at least two internal

nodes, 2 ≥ F4 − 1 = 3− 1 = 2

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 146

Induction step:

An AVL-tree of height h ≥ 2 of minimal size has a root with

sub-trees of height h− 1 and h− 2, respectively. Both, sub-trees

have minmal node number.

h− 1
h− 2

Let

fh := 1+minimal size of AVL-tree of height h .

Then

f1 = 2 = F3

f2 = 3 = F4

fh − 1 = 1+ fh−1 − 1+ fh−2 − 1 , hence

fh = fh−1 + fh−2 = Fh+2

7.3 AVL-Trees

Since

F(k) ≈ 1√
5

(
1+√5

2

)k
,

an AVL-tree with n internal nodes has height Θ(logn).

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 148

7.3 AVL-Trees

We need to maintain the balance condition through rotations.

For this we store in every internal tree-node v the balance of the

node. Let v denote a tree node with left child c` and right child

cr .

balance[v] := height(Tc`)− height(Tcr) ,

where Tc` and Tcr , are the sub-trees rooted at c` and cr ,

respectively.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 149

Rotations

The properties will be maintained through rotations:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 150

Double Rotations

x

y

z

A

B C

D

Le
ftR

ot
at

e (y
) RightRotate (x)

DoubleRightRotate (x)

x

y

z

A B

C

D

z

y x

A B C D

AVL-trees: Insert

ñ Insert like in a binary search tree.

ñ Let v denote the parent of the newly inserted node x.

ñ One of the following cases holds:

v

x

bal(v) = −1

v

x a

bal(v) = 0

v

xa

bal(v) = 0

v

x

bal(v) = 1

ñ If bal[v] ≠ 0, Tv has changed height; the balance-constraint

may be violated at ancestors of v.

ñ Call fix-up(parent[v]) to restore the balance-condition.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 152

AVL-trees: Insert

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.

2. A node has been inserted into Tc, where c is either the right

or left child of v.

3. Tc has increased its height by one (otw. we would already

have aborted the fix-up procedure).

4. The balance at the node c fulfills balance[c] ∈ {−1,1}. This

holds because if the balance of c is 0, then Tc did not change

its height, and the whole procedure will have been aborted in

the previous step.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 153

AVL-trees: Insert

Algorithm 11 AVL-fix-up-insert(v)
1: if balance[v] ∈ {−2,2} then DoRotationInsert(v);
2: if balance[v] ∈ {0} return;

3: AVL-fix-up-insert(parent[v]);

We will show that the above procedure is correct, and that it will

do at most one rotation.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 154

AVL-trees: Insert

Algorithm 12 DoRotationInsert(v)
1: if balance[v] = −2 then

2: if balance[right[v]] = −1 then

3: LeftRotate(v);
4: else

5: DoubleLeftRotate(v);
6: else

7: if balance[left[v]] = 1 then

8: RightRotate(v);
9: else

10: DoubleRightRotate(v);

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 155

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We have to show that after doing one rotation all balance

constraints are fulfilled.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ The height of Tv is the same as before the insert-operation

took place.

We only look at the case where the insert happened into the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 156

AVL-trees: Insert

We have the following situation:

v

h− 1
h+ 1

The right sub-tree of v has increased its height which results in a

balance of −2 at v.

Before the insertion the height of Tv was h+ 1.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 157

Case 1: balance[right[v]] = −1

We do a left rotation at v

v

x

h− 1

h− 1

h

x

v

h− 1 h− 1
h

LeftRotate (v)

Now, Tv has height h+ 1 as before the insertion. Hence, we do

not need to continue.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 158

Case 2: balance[right[v]] = 1

v

x

y

h− 1

h− 1
or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1

h− 1
or
h− 2 h− 1

or
h− 2

h− 1

v x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate(v)

RightRotate (x)

DoubleLeftRotate (v)

Height is h+ 1, as
before the insert.

AVL-trees: Delete

ñ Delete like in a binary search tree.

ñ Let v denote the parent of the node that has been

spliced out.

ñ The balance-constraint may be violated at v, or at ancestors

of v, as a sub-tree of a child of v has reduced its height.

ñ Initially, the node c—the new root in the sub-tree that has

changed— is either a dummy leaf or a node with two dummy

leafs as children.
v

x

c

Case 1

v

x

v

Case 2

In both cases bal[c] = 0.

ñ Call fix-up(v) to restore the balance-condition.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 160

AVL-trees: Delete

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.

2. A node has been deleted from Tc, where c is either the right

or left child of v.

3. Tc has either decreased its height by one or it has stayed the

same (note that this is clear right after the deletion but we

have to make sure that it also holds after the rotations done

within Tc in previous iterations).

4. The balance at the node c fulfills balance[c] = {0}. This

holds because if the balance of c is in {−1,1}, then Tc did

not change its height, and the whole procedure will have

been aborted in the previous step.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 161

AVL-trees: Delete

Algorithm 13 AVL-fix-up-delete(v)
1: if balance[v] ∈ {−2,2} then DoRotationDelete(v);
2: if balance[v] ∈ {−1,1} return;

3: AVL-fix-up-delete(parent[v]);

We will show that the above procedure is correct. However, for the

case of a delete there may be a logarithmic number of rotations.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 162

AVL-trees: Delete

Algorithm 14 DoRotationDelete(v)
1: if balance[v] = −2 then

2: if balance[right[v]] = −1 then

3: LeftRotate(v);
4: else

5: DoubleLeftRotate(v);
6: else

7: if balance[left[v]] = {0,1} then

8: RightRotate(v);
9: else

10: DoubleRightRotate(v);

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 163

AVL-trees: Delete

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ If now balance[v] ∈ {−1,1} we can stop as the height of Tv
is the same as before the deletion.

We only look at the case where the deleted node was in the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 164

AVL-trees: Delete

We have the following situation:

v

h+ 1
h

h− 1

The right sub-tree of v has decreased its height which results in a

balance of 2 at v.

Before the insertion the height of Tv was h+ 2.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 165

Case 1: balance[left[v]] ∈ {0, 1}

v

x

h
h
or
h− 1

h− 1

x

v

h

h
or
h− 1

h− 1

RightRotate (v)

If the middle subtree has height h the whole tree has height h+ 2

as before the deletion. The iteration stops as the balance at the

root is non-zero.

If the middle subtree has height h− 1 the whole tree has

decreased its height from h+ 2 to h+ 1. We do continue the

fix-up procedure as the balance at the root is zero.

Case 2: balance[left[v]] = −1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

vx

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate (x)

RightRotate(v)

DoubleRightRotate (v)Sub-tree has height
h+ 1, i.e., it has
shrunk. The
balance at y is
zero. We continue
the iteration.

	AVL-Trees

