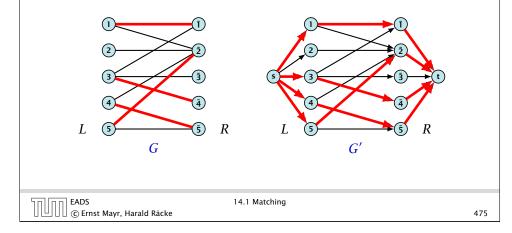
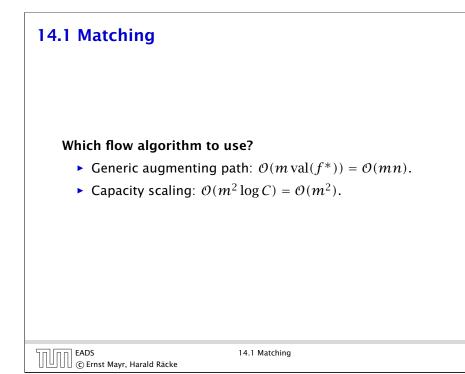
Proof

Max cardinality matching in $G \leq$ value of maxflow in G'

- Given a maximum matching *M* of cardinality *k*.
- Consider flow *f* that sends one unit along each of *k* paths.
- ► *f* is a flow and has cardinality *k*.

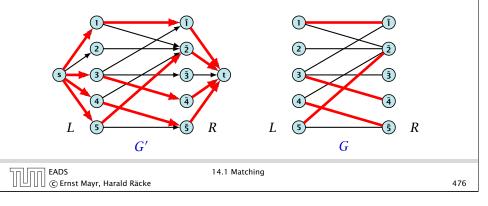




Proof

Max cardinality matching in $G \ge$ value of maxflow in G'

- Let f be a maxflow in G' of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- Consider M= set of edges from L to R with f(e) = 1.
- Each node in *L* and *R* participates in at most one edge in *M*.
- |M| = k, as the flow must use at least k middle edges.



Baseball Elimination

EADS © Ernst Mayr, Harald Räcke

477

team	wins	losses	remaining games			
i	w_i	ℓ_i	Atl	Phi	NY	Mon
Atlanta	83	71	-	1	6	1
Philadelphia	80	79	1	-	0	2
New York	78	78	6	0	-	0
Montreal	77	82	1	2	0	-

Which team can end the season with most wins?

 Montreal is eliminated, since even after winning all remaining games there are only 80 wins.

14.2 Baseball Elimination

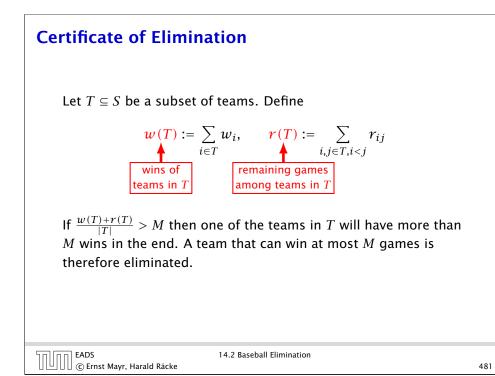
But also Philadelphia is eliminated. Why?

Baseball Elimination

Formal definition of the problem:

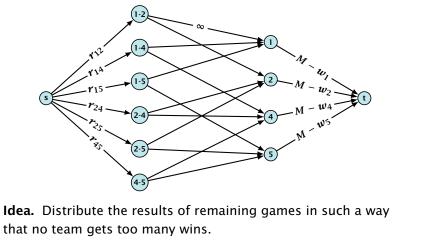
- Given a set *S* of teams, and one specific team $z \in S$.
- Team x has already won w_x games.
- Team x still has to play team y, r_{xy} times.
- Does team z still have a chance to finish with the most number of wins.

EADS © Ernst Mayr, Harald Räcke	14.2 Baseball Elimination	



Baseball Elimination

Flow networks for z = 3. *M* is number of wins Team 3 can still obtain.



	14.2 Baseball Elimination	
🛛 🛄 🔲 🕞 Ernst Mayr, Harald Räcke		480

Theorem 83

479

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{ij \in S \setminus \{z\}, i < j} r_{ij}$.

Proof (⇐)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for a node x-y not both team nodes x and y are in T, then x-y ∉ A as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

 $r(S \setminus \{z\}) > \operatorname{cap}(S, V \setminus S)$

$$\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$$
$$\geq r(S \setminus \{z\}) - r(T) + |T|M - w(T)$$

► This gives M < (w(T) + r(T))/|T|, i.e., z is eliminated.

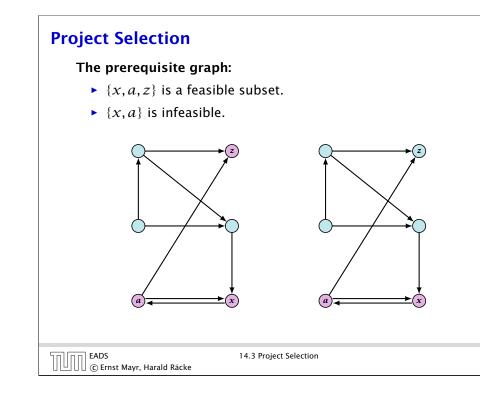
14.2 Baseball Elimination

Baseball Elimination

Proof (⇒)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- This is less than $M w_x$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.
- Hence, team *z* is not eliminated.

Soloo EADS	14.2 Baseball Elimination	
🛛 🔲 🗍 😨 Ernst Mayr, Harald Räcke		483



Project Selection

Project selection problem:

- Set *P* of possible projects. Project *v* has an associated profit *p_v* (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- ► A subset *A* of projects is feasible if the prerequisites of every project in *A* also belong to *A*.

Goal: Find a feasible set of projects that maximizes the profit.

EADS 14.3 Project Selection

484

Project Selection

485

Mincut formulation:

- Edges in the prerequisite graph get infinite capacity.
- ► Add edge (s, v) with capacity p_v for nodes v with positive profit.
- ► Create edge (v, t) with capacity -pv for nodes v with negative profit.

