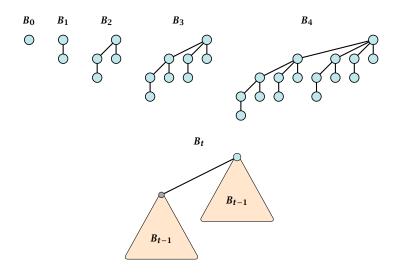
Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	n log n	n log n	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n\log n$	log n	1



8.2 Binomial Heaps

▲ □ ▶ ▲ 圖 ▶ ▲ 필 ▶ ▲ 필 ▶
 289/596

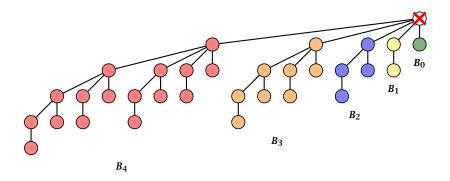
- B_k has 2^k nodes.
- B_k has height k.
- The root of B_k has degree k.
- B_k has $\binom{k}{\ell}$ nodes on level ℓ .
- Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$.

- B_k has 2^k nodes.
- B_k has height k.
- The root of B_k has degree k.
- B_k has $\binom{k}{\ell}$ nodes on level ℓ .
- Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$.

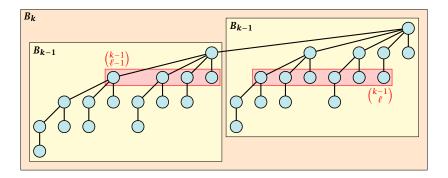
- B_k has 2^k nodes.
- B_k has height k.
- The root of B_k has degree k.
- B_k has $\binom{k}{\ell}$ nodes on level ℓ .
- Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$.

- B_k has 2^k nodes.
- B_k has height k.
- The root of B_k has degree k.
- B_k has $\binom{k}{\ell}$ nodes on level ℓ .
- Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$.

- B_k has 2^k nodes.
- B_k has height k.
- The root of B_k has degree k.
- B_k has $\binom{k}{\ell}$ nodes on level ℓ .
- Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$.

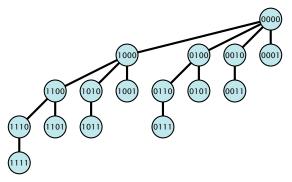


Deleting the root of B_5 leaves sub-trees B_4 , B_3 , B_2 , and B_1 .



The number of nodes on level ℓ in tree B_k is therefore

$$\binom{k-1}{\ell-1} + \binom{k-1}{\ell} = \binom{k}{\ell}$$



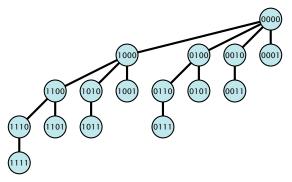
The binomial tree B_k is a sub-graph of the hypercube H_k .

The parent of a node with label b_n, \ldots, b_1, b_0 is obtained by setting the least significant 1-bit to 0.

The ℓ -th level contains nodes that have ℓ 1's in their label.

EADS © Ernst Mayr, Harald Räcke 8.2 Binomial Heaps

▲ □ ▶ ▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 293/596



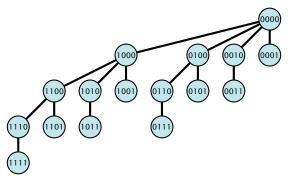
The binomial tree B_k is a sub-graph of the hypercube H_k .

The parent of a node with label b_n, \ldots, b_1, b_0 is obtained by setting the least significant 1-bit to 0.

The ℓ -th level contains nodes that have ℓ 1's in their label.

EADS © Ernst Mayr, Harald Räcke 8.2 Binomial Heaps

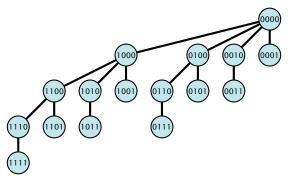
▲□▶▲四▶▲夏▶▲夏▶ 293/596



The binomial tree B_k is a sub-graph of the hypercube H_k .

The parent of a node with label b_n, \ldots, b_1, b_0 is obtained by setting the least significant 1-bit to 0.

The ℓ -th level contains nodes that have ℓ 1's in their label.



The binomial tree B_k is a sub-graph of the hypercube H_k .

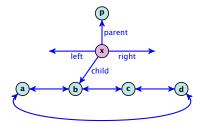
The parent of a node with label b_n, \ldots, b_1, b_0 is obtained by setting the least significant 1-bit to 0.

The ℓ -th level contains nodes that have ℓ 1's in their label.

EADS © Ernst Mayr, Harald Räcke

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x.left and x.right point to the left and right sibling of x (if x does not have children then x.left = x.right = x).

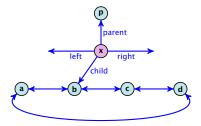


8.2 Binomial Heaps

▲ □ ▶ ▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 294/596

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x.left and x.right point to the left and right sibling of x (if x does not have children then x.left = x.right = x).

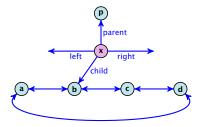


8.2 Binomial Heaps

▲ □ ▶ ▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 294/596

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x.left and x.right point to the left and right sibling of x (if x does not have children then x.left = x.right = x).

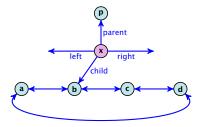


8.2 Binomial Heaps

▲ □ ▶ ▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 294/596

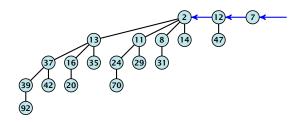
How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x.left and x.right point to the left and right sibling of x (if x does not have children then x.left = x.right = x).



8.2 Binomial Heaps

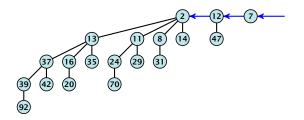
▲ □ ▶ ▲ 团 ▶ ▲ 필 ▶ ▲ 필 ▶ 294/596



In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

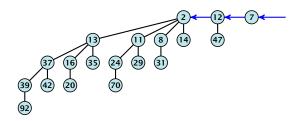
There is at most one tree for every dimension/order. For example the above heap contains trees B_0 , B_1 , and B_4 .



In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example the above heap contains trees B_0 , B_1 , and B_4 .



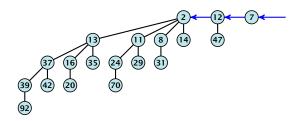
In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example the above heap contains trees B_0 , B_1 , and B_4 .

8.2 Binomial Heaps

▲ □ ▶ ▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 295/596



In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example the above heap contains trees B_0 , B_1 , and B_4 .

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n = \sum_i 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the dual representation of n.

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n = \sum_i 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the dual representation of n.

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n = \sum_i 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the dual representation of n.

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n = \sum_i 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the dual representation of n.

Properties of a heap with *n* keys:

- Let $n = b_d b_{d-1}, \dots, b_0$ denote the dual representation of n.
- The heap contains tree B_i iff $b_i = 1$.
- Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most [log n].
- The trees are stored in a single-linked list; ordered by dimension/size.

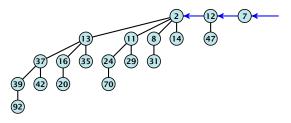


8.2 Binomial Heaps

▲ □ ▶ ▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 297/596

Properties of a heap with *n* keys:

- Let $n = b_d b_{d-1}, \dots, b_0$ denote the dual representation of n.
- The heap contains tree B_i iff $b_i = 1$.
- Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most [log n].
- The trees are stored in a single-linked list; ordered by dimension/size.

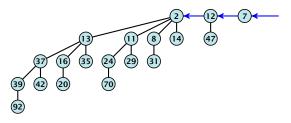


8.2 Binomial Heaps

▲ □ ▶ ▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 297/596

Properties of a heap with *n* keys:

- Let $n = b_d b_{d-1}, \dots, b_0$ denote the dual representation of n.
- The heap contains tree B_i iff $b_i = 1$.
- Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most [log n].
- The trees are stored in a single-linked list; ordered by dimension/size.

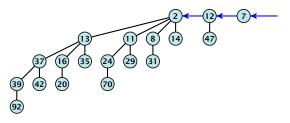


8.2 Binomial Heaps

▲ □ ▶ ▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 297/596

Properties of a heap with *n* keys:

- Let $n = b_d b_{d-1}, \dots, b_0$ denote the dual representation of n.
- The heap contains tree B_i iff $b_i = 1$.
- Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most [log n].
- The trees are stored in a single-linked list; ordered by dimension/size.

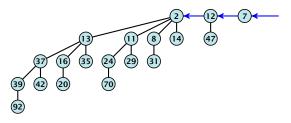


8.2 Binomial Heaps

▲ □ ▶ ▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 297/596

Properties of a heap with *n* keys:

- Let $n = b_d b_{d-1}, \dots, b_0$ denote the dual representation of n.
- The heap contains tree B_i iff $b_i = 1$.
- Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- ► The height of the largest tree is at most [log *n*].
- The trees are stored in a single-linked list; ordered by dimension/size.

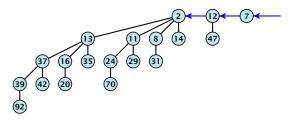


8.2 Binomial Heaps

▲ □ ▶ ▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 297/596

Properties of a heap with *n* keys:

- Let $n = b_d b_{d-1}, \dots, b_0$ denote the dual representation of n.
- The heap contains tree B_i iff $b_i = 1$.
- Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lfloor \log n \rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.

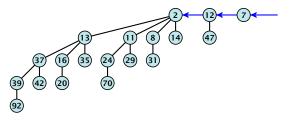


8.2 Binomial Heaps

▲ □ ▶ ▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 297/596

Properties of a heap with *n* keys:

- Let $n = b_d b_{d-1}, \dots, b_0$ denote the dual representation of n.
- The heap contains tree B_i iff $b_i = 1$.
- Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lfloor \log n \rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.



8.2 Binomial Heaps

▲ □ ▷ ▲ 個 ▷ ▲ 클 ▷ ▲ 클 ▷ 297/596

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

For more trees the technique is analogous to binary addition.

EADS © Ernst Mayr, Harald Räcke

8.2 Binomial Heaps

▲ □ ▶ ▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 298/596

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

For more trees the technique is analogous to binary addition.

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

For more trees the technique is analogous to binary addition.

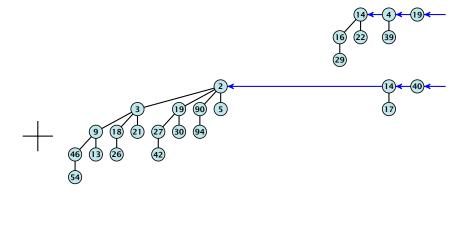
The merge-operation is instrumental for binomial heaps.

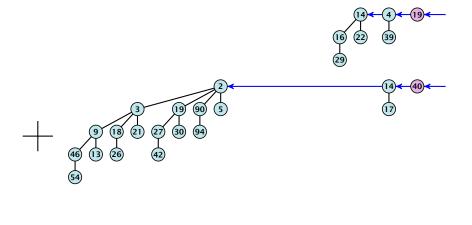
A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

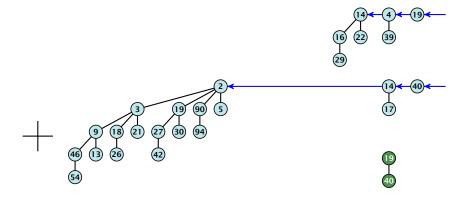
Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

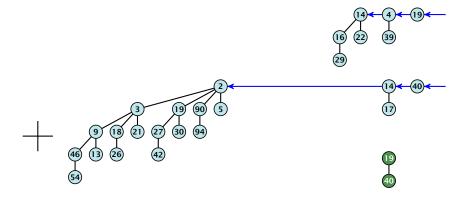
Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

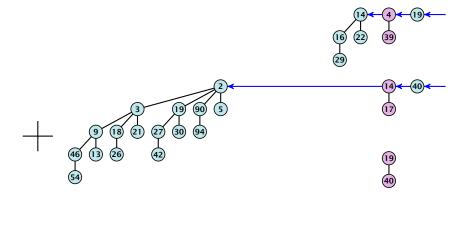
For more trees the technique is analogous to binary addition.

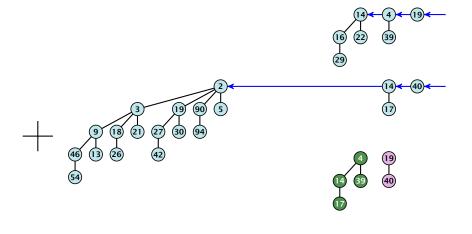


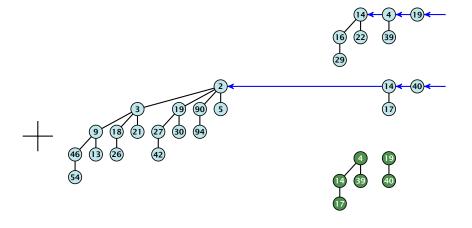


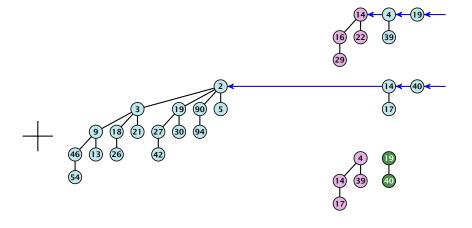


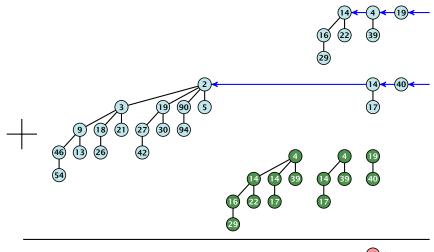


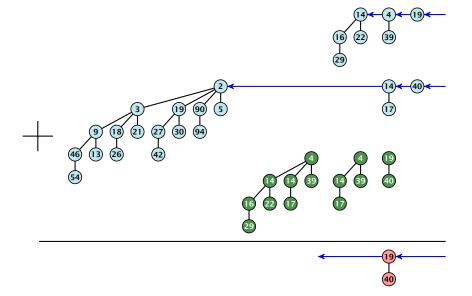


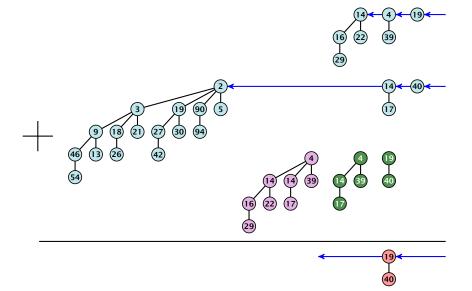


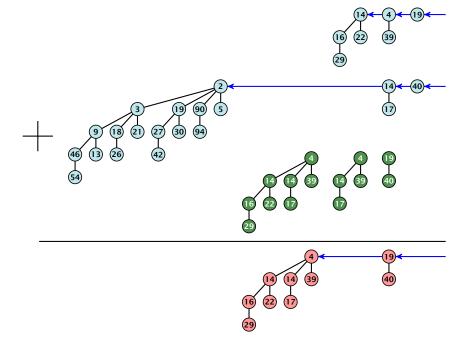


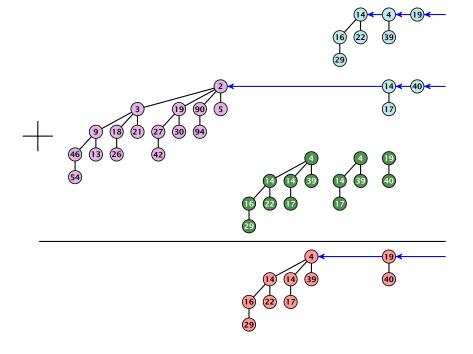


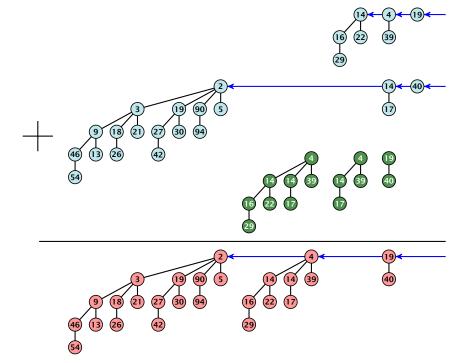


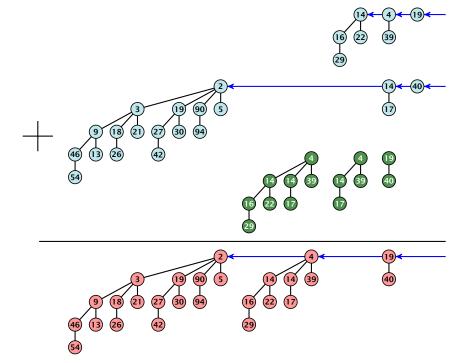












S_1 .merge(S_2):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.
 Time: O(log n).

 S_1 .merge(S_2):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.

• Time: $\mathcal{O}(\log n)$.

 S_1 .merge(S_2):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.
- Time: $\mathcal{O}(\log n)$.

All other operations can be reduced to merge().

S.insert(x):

- Create a new heap S' that contains just the element x.
- ► Execute *S*.merge(*S*′)
- Time: $\mathcal{O}(\log n)$.

All other operations can be reduced to merge().

S.insert(x):

- Create a new heap S' that contains just the element x.
- ► Execute *S*.merge(*S*′).
- Time: $\mathcal{O}(\log n)$.

All other operations can be reduced to merge().

S.insert(x):

- Create a new heap S' that contains just the element x.
- ► Execute *S*.merge(*S*′).
- Time: $\mathcal{O}(\log n)$.

S.minimum():

- Find the minimum key-value among all roots.
- Time: $\mathcal{O}(\log n)$.

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- ► Compute *S*.merge(*S*′).
- Time: $\mathcal{O}(\log n)$.

S.delete-min():

Find the minimum key-value among all roots.

- Remove the corresponding tree T_{\min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- ► Compute *S*.merge(*S*′).
- Time: $\mathcal{O}(\log n)$.

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- ► Compute *S*.merge(*S*′).
- Time: $\mathcal{O}(\log n)$.

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $O(\log n)$ trees).
- ► Compute *S*.merge(*S*′).
- Time: $\mathcal{O}(\log n)$.

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $O(\log n)$ trees).
- ► Compute *S*.merge(*S*′).
- Time: $\mathcal{O}(\log n)$.

S.delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $O(\log n)$ trees).
- ► Compute *S*.merge(*S*′).
- Time: $\mathcal{O}(\log n)$.

- Decrease the key of the element pointed to by *h*.
- Bubble the element up in the tree until the heap property is fulfilled.
- Time: $O(\log n)$ since the trees have height $O(\log n)$.

- Decrease the key of the element pointed to by *h*.
- Bubble the element up in the tree until the heap property is fulfilled.
- Time: $O(\log n)$ since the trees have height $O(\log n)$.

- Decrease the key of the element pointed to by *h*.
- Bubble the element up in the tree until the heap property is fulfilled.
- Time: $O(\log n)$ since the trees have height $O(\log n)$.

- Decrease the key of the element pointed to by *h*.
- Bubble the element up in the tree until the heap property is fulfilled.
- Time: $O(\log n)$ since the trees have height $O(\log n)$.

S.delete(handle h):

- Execute S.decrease-key $(h, -\infty)$.
- ► Execute S.delete-min().
- Time: $\mathcal{O}(\log n)$.

S.delete(handle h):

- Execute S.decrease-key $(h, -\infty)$.
- Execute S.delete-min().
- Time: $\mathcal{O}(\log n)$.

S.delete(handle h):

- Execute S.decrease-key $(h, -\infty)$.
- Execute S.delete-min().
- Time: $\mathcal{O}(\log n)$.

S.delete(handle h):

- Execute S.decrease-key $(h, -\infty)$.
- Execute S.delete-min().
- Time: $\mathcal{O}(\log n)$.

