How to choose augmenting paths?

- ► We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

© Ernst Mayr, Harald Räcke

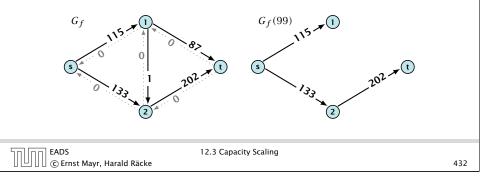
- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

Alg	gorithm 46 maxflow(G, s, t, c)
	foreach $e \in E$ do $f_e \leftarrow 0$;
2:	$\Delta \leftarrow 2^{\lceil \log_2 C \rceil}$
3:	while $\Delta \ge 1$ do
4:	$G_f(\Delta) \leftarrow \Delta$ -residual graph
5:	while there is augmenting path P in $G_f(\Delta)$ do
6:	$f \leftarrow \operatorname{augment}(f, c, P)$
7:	$update(G_f(\Delta))$
8:	$\Delta \leftarrow \Delta/2$
9:	return <i>f</i>

Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .



Capacity Scaling

431

433

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

EADS

© Ernst Mayr, Harald Räcke

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.

12.3 Capacity Scaling

Capacity Scaling

Lemma 60 There are $\lceil \log C \rceil$ iterations over Δ .

Proof: obvious.

Lemma 61

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + 2m\Delta$.

Proof: less obvious, but simple:

- An *s*-*t* cut in $G_f(\Delta)$ gives me an upper bound on the amount of flow that my algorithm can still add to f.
- The edges that currently have capacity at most Δ in G_f form an s-t cut with capacity at most 2mΔ.

EADS © Ernst Mayr, Harald Räcke	12.3 Capacity Scaling	
🛛 💾 🛛 🗋 🕲 Ernst Mayr, Harald Räcke		435

Capacity Scaling

Lemma 62

There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- $\operatorname{val}(f^*) \leq \operatorname{val}(f) + 2m\Delta$
- each augmentation increases flow by Δ .

Theorem 63

We need $O(m \log C)$ augmentations. The algorithm can be implemented in time $O(m^2 \log C)$.

EADS © Ernst Mayr, Harald Räcke 12.3 Capacity Scaling

436

