How to choose augmenting paths?

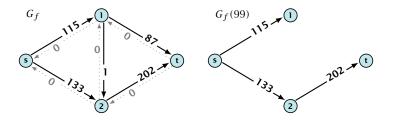
- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

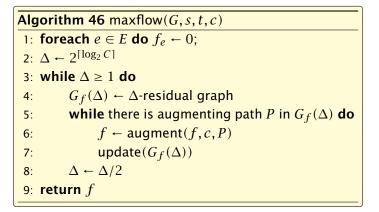
- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- G_f(Δ) is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ.



12.3 Capacity Scaling



Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.

Lemma 60 *There are* $\lceil \log C \rceil$ *iterations over* Δ *.* **Proof:** obvious.

Lemma 61

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + 2m\Delta$.

Proof: less obvious, but simple:

- An *s*-*t* cut in $G_f(\Delta)$ gives me an upper bound on the amount of flow that my algorithm can still add to *f*.
- The edges that currently have capacity at most Δ in G_f form an *s*-*t* cut with capacity at most $2m\Delta$.

Lemma 62

There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- $\operatorname{val}(f^*) \leq \operatorname{val}(f) + 2m\Delta$
- each augmentation increases flow by Δ .

Theorem 63 *We need* $O(m \log C)$ *augmentations. The algorithm can be implemented in time* $O(m^2 \log C)$.

