We need to find paths efficiently.

- We need to find paths efficiently.
- ▶ We want to guarantee a small number of iterations.

- We need to find paths efficiently.
- ▶ We want to guarantee a small number of iterations.

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- · Choose the shortest augmenting path.

Intuition:

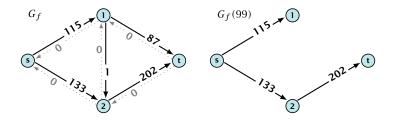
Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- ▶ $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .




```
Algorithm 46 maxflow(G, s, t, c)
1: foreach e \in E do f_e \leftarrow 0;
2: \Delta \leftarrow 2^{\lceil \log_2 C \rceil}
3: while \Delta \geq 1 do
   G_f(\Delta) \leftarrow \Delta-residual graph
4:
5: while there is augmenting path P in G_f(\Delta) do
6: f \leftarrow \operatorname{augment}(f, c, P)
7: \operatorname{update}(G_f(\Delta))
8: \Delta \leftarrow \Delta/2
9: return f
```


Assumption:

All capacities are integers between 1 and \mathcal{C} .

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

▶ because of integrality we have $G_f(1) = G_f$

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore

Assumption:

All capacities are integers between 1 and C.

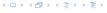
Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.



Lemma 60

There are $\lceil \log C \rceil$ iterations over Δ .

Proof: obvious.

FADS

Lemma 60

There are $\lceil \log C \rceil$ iterations over Δ .

Proof: obvious.

Lemma 61

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $\mathrm{val}(f) + 2m\Delta$.

Proof: less obvious, but simple:

Lemma 60

There are $\lceil \log C \rceil$ iterations over Δ .

Proof: obvious.

Lemma 61

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $\mathrm{val}(f) + 2m\Delta$.

Proof: less obvious, but simple:

▶ An s-t cut in $G_f(\Delta)$ gives me an upper bound on the amount of flow that my algorithm can still add to f.

Lemma 60

There are $\lceil \log C \rceil$ iterations over Δ .

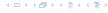
Proof: obvious.

Lemma 61

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + 2m\Delta$.

Proof: less obvious, but simple:

- An s-t cut in $G_f(\Delta)$ gives me an upper bound on the amount of flow that my algorithm can still add to f.
- ▶ The edges that currently have capacity at most Δ in G_f form an s-t cut with capacity at most $2m\Delta$.



Lemma 62

There are at most 2m augmentations per scaling-phase.

Lemma 62

There are at most 2m augmentations per scaling-phase.

Proof:

Let f be the flow at the end of the previous phase.

Lemma 62

There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- $ightharpoonup \operatorname{val}(f^*) \le \operatorname{val}(f) + 2m\Delta$

Lemma 62

There are at most 2m augmentations per scaling-phase.

Proof:

- ▶ Let *f* be the flow at the end of the previous phase.
- $\operatorname{val}(f^*) \le \operatorname{val}(f) + 2m\Delta$
- each augmentation increases flow by Δ .

Lemma 62

There are at most 2m augmentations per scaling-phase.

Proof:

- ▶ Let *f* be the flow at the end of the previous phase.
- $\operatorname{val}(f^*) \le \operatorname{val}(f) + 2m\Delta$
- each augmentation increases flow by Δ .

Theorem 63

We need $\mathcal{O}(m \log C)$ augmentations. The algorithm can be implemented in time $\mathcal{O}(m^2 \log C)$.

