The Inhomogeneous Case

If f(n) is a polynomial of degree r this method can be applied r + 1 times to obtain a homogeneous equation:

 $T[n] = T[n-1] + n^2$

Shift:

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

Difference:

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

hnlinni EADS	6.3 The Characteristic Polynomial	
U () Ernst Mayr, Harald Räcke		77

6.4 Generating Functions

Definition 7 (Generating Function)

Let $(a_n)_{n\geq 0}$ be a sequence. The corresponding

generating function (Erzeugendenfunktion) is

$$F(z) := \sum_{n=0}^{\infty} a_n z^n;$$

 exponential generating function (exponentielle Erzeugendenfunktion) is

$$F(z) = \sum_{n \ge 0} \frac{a_n}{n!} z^n.$$

T[n] = 2T[n-1] - T[n-2] + 2n - 1

Shift:

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$
$$= 2T[n-2] - T[n-3] + 2n - 3$$

Difference:

$$T[n] - T[n-1] = 2T[n-1] - T[n-2] + 2n - 1$$
$$- 2T[n-2] + T[n-3] - 2n + 3$$

$$T[n] = 3T[n-1] - 3T[n-2] + T[n-3] + 2$$

and so on...

הח] הח] EADS	6.3 The Characteristic Polynomial	
🛛 🛄 🗍 🔘 🕲 Ernst Mayr, Harald Räcke		78

6.4 Generating Functions

Example 8

EADS © Ernst Mayr, Harald Räcke

1. The generating function of the sequence (1, 0, 0, ...) is

F(z)=1.

2. The generating function of the sequence (1, 1, 1, ...) is

$$F(z)=\frac{1}{1-z}.$$

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

- Let $f = \sum_{n=0}^{\infty} a_n z^n$ and $g = \sum_{n=0}^{\infty} b_n z^n$.
 - Equality: f and g are equal if $a_n = b_n$ for all n.
 - Addition: $f + g := \sum_{n=0}^{\infty} (a_n + b_n) z^n$.
 - Multiplication: $f \cdot g := \sum_{n=0}^{\infty} c_n z^n$ with $c = \sum_{p=0}^{n} a_p b_{n-p}$.

6.4 Generating Functions

There are no convergence issues here.

50 00	EADS	
	© Frnst Mayr, Harald Räcke	

81

83

6.4 Generating Functions

What does $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ mean in the algebraic view?

It means that the power series 1 - z and the power series $\sum_{n=0}^{\infty} z^n$ are invers, i.e.,

$$(1-z)\cdot \left(\sum_{n=0}^{\infty}z^{n}\right)=1$$

This is well-defined.

EADS

6.4 Generating Functions © Ernst Mavr. Harald Räcke

6.4 Generating Functions

The arithmetic view:

We view a power series as a function $f : \mathbb{C} \to \mathbb{C}$.

Then, it is important to think about convergence/convergence radius etc.

EADS © Ernst Mayr, Harald Räcke

6.4 Generating Functions

6.4 Generating Functions Suppose we are given the generating function

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z} \; .$$

We can compute the derivative:

 $\sum_{n\geq 1} nz^{n-1} = \frac{1}{(1-z)^2}$ $\sum_{n=0}^{\infty} (n+1) z^n$

Hence, the generating function of the sequence $a_n = n + 1$ is $1/(1-z)^2$.

EADS © Ernst Mayr, Harald Räcke

6.4 Generating Functions

We can repeat this

$$\sum_{n=0}^{\infty} (n+1)z^n = \frac{1}{(1-z)^2}$$

Derivative:

$$\sum_{\substack{n \ge 1 \\ \sum_{n=0}^{\infty} (n+1)(n+2)z^n}} n(n+1)z^{n-1} = \frac{2}{(1-z)^3}$$

Hence, the generating function of the sequence $a_n = (n+1)(n+2)$ is $\frac{2}{(1-z)^2}$.

EADS © Ernst Mayr, Harald Räcke

6.4 Generating Functions

6.4 Generating Functions $\sum_{n \ge 0} nz^n = \sum_{n \ge 0} (n+1)z^n - \sum_{n \ge 0} z^n$ $= \frac{1}{(1-z)^2} - \frac{1}{1-z}$ $=\frac{z}{(1-z)^2}$ The generating function of the sequence $a_n = n$ is $\frac{z}{(1-z)^2}$.

6.4 Generating Functions

Computing the *k*-th derivative of $\sum z^n$.

$$\sum_{n \ge k} n(n-1) \dots (n-k+1) z^{n-k} = \sum_{n \ge 0} (n+k) \dots (n+1) z^n$$
$$= \frac{k!}{(1-z)^{k+1}} .$$

Hence:

$$\sum_{n\geq 0} \binom{n+k}{k} z^n = \frac{1}{(1-z)^{k+1}}$$

The generating function of the sequence $a_n = \binom{n+k}{k}$ is $\frac{1}{(1-z)^{k+1}}$.

	6.4 Generating Functions	
🛛 💾 🗋 🕻 🛈 Ernst Mayr, Harald Räcke		86

6.4 Generating Functions

We know

$$\sum_{n\geq 0} \gamma^n = \frac{1}{1-\gamma}$$

Hence,

EADS © Ernst Mayr, Harald Räcke

$$\sum_{n\geq 0}a^nz^n=\frac{1}{1-az}$$

The generating function of the sequence $f_n = a^n$ is $\frac{1}{1-az}$.

EADS © Ernst Mayr, Harald Räcke EADS 6.4 Generating Functions

87

6.4 Generating Functions

Suppose we have again the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} (a_{n-1} + 1) z^n$
= $1 + z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} z^n$
= $z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} z^n$
= $zA(z) + \sum_{n \ge 0} z^n$
= $zA(z) + \frac{1}{1-z}$
6.4 Generating Functions
6.4 Generating Functions
6.4 Generating Functions

\pmb{n} -th sequence element	generating function
1	$\frac{1}{1-z}$
n + 1	$\frac{1}{(1-z)^2}$
$\binom{n+k}{n}$	$\frac{1}{(1-z)^{k+1}}$
n	$\frac{z}{(1-z)^2}$
a^n	$\frac{1}{1-az}$
n^2	$\frac{z(1+z)}{(1-z)^3}$
$\frac{1}{n!}$	$\frac{z(1+z)}{(1-z)^3}$

91

6.4 Generating Functions

Solving for A(z) gives

$$\sum_{n\geq 0} a_n z^n = A(z) = \frac{1}{(1-z)^2} = \sum_{n\geq 0} (n+1) z^n$$

Hence,
$$a_n = n + 1$$
.
Let $a_n = n + 1$.
Let $a_n = n + 1$.
A Generating Functions
6.4 Generating Functions
6.4 Generating Functions
90

Some	Generating	Functions
------	------------	-----------

	n -th sequence element	generating function
	cf_n	cF
	$f_n + g_n$	F + G
	$\sum_{i=0}^{n} f_i g_{n-i}$	$F \cdot G$
	f_{n-k} $(n \ge k); 0$ otw.	$z^k F$
	$\sum_{i=0}^{n} f_i$	$\frac{F(z)}{1-z}$
	nf_n	$z \frac{\mathrm{d}F(z)}{\mathrm{d}z}$
	$c^n f_n$	F(cz)
EADS 6.4 Generating Functions		

Solving Recursions with Generating Functions

- 1. Set $A(z) = \sum_{n \ge 0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- 3. Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- 4. Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.
- 5. Write f(z) as a formal power series. Techniques:
 - partial fraction decomposition (Partialbruchzerlegung)
 - Iookup in tables
- 6. The coefficients of the resulting power series are the a_n .

	6.4 Generating Functions	
🛛 💾 🛛 🗋 🕲 Ernst Mayr, Harald Räcke		93

Example: $a_n = 2a_{n-1}, a_0 = 1$

3. Transform right hand side so that infinite sums can be replaced by A(z) or by simple function.

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

= 1 + 2z $\sum_{n \ge 1} a_{n-1}z^{n-1}$
= 1 + 2z $\sum_{n \ge 0} a_n z^n$
= 1 + 2z $\cdot A(z)$

4. Solve for A(z).

$$A(z) = \frac{1}{1 - 2z}$$

	6.4 Generating Functions
🛛 🛄 🗋 🗋 🕲 Ernst Mayr, Harald Räcke	

95

Example: $a_n = 2a_{n-1}, a_0 = 1$

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

2. Transform right hand side so that recurrence can be plugged in:

$$A(z) = a_0 + \sum_{n \ge 1} a_n z^n$$

2. Plug in:

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

	6.4 Generating Functions	
🛛 🛄 🗋 🕻 🕲 Ernst Mayr, Harald Räcke		94

Example: $a_n = 2a_{n-1}, a_0 = 1$ 5. Rewrite f(n) as a power series: $\sum_{n \ge 0} a_n z^n = A(z) = \frac{1}{1 - 2z} = \sum_{n \ge 0} 2^n z^n$ $a_n z^n = A(z) = \frac{1}{1 - 2z} = \sum_{n \ge 0} 2^n z^n$ 6.4 Generating Functions

Example:
$$a_n = 3a_{n-1} + n$$
, $a_0 = 1$

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

EADS	6.4 Generating Functions	97

Example:
$$a_n = 3a_{n-1} + n$$
, $a_0 = 1$

4. Solve for A(z):

$$A(z) = 1 + 3zA(z) + \frac{z}{(1-z)^2}$$

gives

$$A(z) = \frac{(1-z)^2 + z}{(1-3z)(1-z)^2} = \frac{z^2 - z + 1}{(1-3z)(1-z)^2}$$

99

EADS © Ernst Mayr, Harald Räcke	6.4 Generating Functions

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

2./3. Transform right hand side:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} a_n z^n$
= $1 + \sum_{n \ge 1} (3a_{n-1} + n)z^n$
= $1 + 3z \sum_{n \ge 1} a_{n-1}z^{n-1} + \sum_{n \ge 1} nz^n$
= $1 + 3z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} nz^n$
= $1 + 3zA(z) + \frac{z}{(1-z)^2}$

6.4 Generating Functions

6.4 Generating Functions

98

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$ 5. Write f(z) as a formal power series: We use partial fraction decomposition: $\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}$ This leads to the following conditions: A + B + C = 1 2A + 4B + 3C = 1 A + 3B = 1which gives $A = \frac{7}{4} \quad B = -\frac{1}{4} \quad C = -\frac{1}{2}$ 6.4 Generating Functions 6.4 Generating Functions 100

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$	
5. Write $f(z)$ as a formal power series:	
$A(z) = \frac{7}{4} \cdot \frac{1}{1-3z} - \frac{1}{4} \cdot \frac{1}{1-z} - \frac{1}{2} \cdot \frac{1}{(1-z)^2}$ = $\frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n+1) z^n$ = $\sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{4} - \frac{1}{2}(n+1)\right) z^n$ 6. This means $a_n = \frac{7}{4}3^n - \frac{1}{2}n - \frac{3}{4}$.	
EADS 6.4 Generating Functions	101

6.5 Transformation of the Recurrence

Example 10

 $f_1=1$ $f_n=3f_{rac{n}{2}}+n; ext{ for } n=2^k;$

Define

 $g_k := f_{2^k}$.

EADS 6.5 Transformation of the Recurrence		
UUUC Ernst Mayr, Harald Räcke	EADS © Ernst Mayr, Harald Räcke	6.5 Transformation of the Recurrence

103

6.5 Transformation of the Recurrence

Example 9

$$f_0 = 1$$

 $f_1 = 2$
 $f_n = f_{n-1} \cdot f_{n-2}$ for $n \ge 2$.

Define

$$g_n := \log f_n$$

Then

$$g_n = g_{n-1} + g_{n-2} \text{ for } n \ge 2$$

$$g_1 = \log 2 = 1, \ g_0 = 0 \text{ (f} \tilde{A} \check{C} \tilde{A} \check{S} r \ \log = \log_2 \text{)}$$

$$g_n = F_n \text{ (n-th Fibonacci number$)}$$

$$f_n = 2^{F_n}$$
6.5 Transformation of the Recurrence

6.5 Transformation	on of the Recurrence	
Example 10 Then:	$g_0 = 1$ $g_k = 3g_{k-1} + 2^k, \ k \ge 1$	
We get,	$g_k = 3^{k+1} - 2^{k+1}, \text{ hence}$ $f_n = 3 \cdot 3^k - 2 \cdot 2^k$ $= 3(2^{\log 3})^k - 2 \cdot 2^k$ $= 3(2^k)^{\log 3} - 2 \cdot 2^k$ $= 3n^{\log 3} - 2n.$	
EADS © Ernst Mayr, Harald Räcke	6.5 Transformation of the Recurrence	103