
The Inhomogeneous Case

If f(n) is a polynomial of degree r this method can be applied

r + 1 times to obtain a homogeneous equation:

T[n] = T[n− 1]+n2

Shift:

T[n− 1] = T[n− 2]+ (n− 1)2 = T[n− 2]+n2 − 2n+ 1

Difference:

T[n]− T[n− 1] = T[n− 1]− T[n− 2]+ 2n− 1

T[n] = 2T[n− 1]− T[n− 2]+ 2n− 1
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T[n] = 2T[n− 1]− T[n− 2]+ 2n− 1

Shift:

T[n− 1] = 2T[n− 2]− T[n− 3]+ 2(n− 1)− 1

= 2T[n− 2]− T[n− 3]+ 2n− 3

Difference:

T[n]− T[n− 1] =2T[n− 1]− T[n− 2]+ 2n− 1

− 2T[n− 2]+ T[n− 3]− 2n+ 3

T[n] = 3T[n− 1]− 3T[n− 2]+ T[n− 3]+ 2

and so on...
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6.4 Generating Functions

Definition 7 (Generating Function)

Let (an)n≥0 be a sequence. The corresponding

ñ generating function (Erzeugendenfunktion) is

F(z) :=
∞∑
n=0

anzn;

ñ exponential generating function (exponentielle

Erzeugendenfunktion) is

F(z) =
∑
n≥0

an
n!
zn.
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6.4 Generating Functions

Example 8

1. The generating function of the sequence (1,0,0, . . .) is

F(z) = 1 .

2. The generating function of the sequence (1,1,1, . . .) is

F(z) = 1
1− z .
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale

Potenzreihe).

Then the generating function is an algebraic object.

Let f =∑∞n=0 anzn and g =∑∞n=0 bnzn.

ñ Equality: f and g are equal if an = bn for all n.

ñ Addition: f + g :=∑∞n=0(an + bn)zn.

ñ Multiplication: f · g :=∑∞n=0 cnzn with c =∑np=0 apbn−p.

There are no convergence issues here.
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6.4 Generating Functions

The arithmetic view:

We view a power series as a function f : C→ C.

Then, it is important to think about convergence/convergence

radius etc.
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6.4 Generating Functions

What does
∑∞
n=0 zn = 1

1−z mean in the algebraic view?

It means that the power series 1− z and the power series∑∞
n=0 zn are invers, i.e.,

(
1− z

)
·
( ∞∑
n=0

zn
)
= 1 .

This is well-defined.
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6.4 Generating Functions

Suppose we are given the generating function

∞∑
n=0

zn = 1
1− z .

We can compute the derivative:

∑
n≥1

nzn−1 = 1
(1− z)2

∑
n≥1

nzn−1

︸ ︷︷ ︸∑∞
n=0(n+1)zn

Hence, the generating function of the sequence an = n+ 1

is 1/(1− z)2.
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6.4 Generating Functions

We can repeat this

∞∑
n=0

(n+ 1)zn = 1
(1− z)2 .

Derivative: ∑
n≥1

n(n+ 1)zn−1 = 2
(1− z)3

∑
n≥1

n(n+ 1)zn−1

︸ ︷︷ ︸∑∞
n=0(n+1)(n+2)zn

Hence, the generating function of the sequence

an = (n+ 1)(n+ 2) is 2
(1−z)2 .
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6.4 Generating Functions

Computing the k-th derivative of
∑
zn.∑

n≥k
n(n− 1) . . . (n− k+ 1)zn−k =

∑
n≥0

(n+ k) . . . (n+ 1)zn

= k!
(1− z)k+1 .

Hence: ∑
n≥0

(
n+ k
k

)
zn = 1

(1− z)k+1 .

The generating function of the sequence an =
(
n+k
k

)
is 1
(1−z)k+1 .
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6.4 Generating Functions

∑
n≥0

nzn =
∑
n≥0

(n+ 1)zn −
∑
n≥0

zn

= 1
(1− z)2 −

1
1− z

= z
(1− z)2

The generating function of the sequence an = n is z
(1−z)2 .
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6.4 Generating Functions

We know ∑
n≥0

yn = 1
1−y

Hence,

∑
n≥0

anzn = 1
1− az

The generating function of the sequence fn = an is 1
1−az .
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6.4 Generating Functions

Suppose we have again the recurrence an = an−1 + 1 for n ≥ 1

and a0 = 1.

A(z) =
∑
n≥0

anzn

= a0 +
∑
n≥1

(an−1 + 1)zn

= 1+ z
∑
n≥1

an−1zn−1 +
∑
n≥1

zn

= z
∑
n≥0

anzn +
∑
n≥0

zn

= zA(z)+
∑
n≥0

zn

= zA(z)+ 1
1− z
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6.4 Generating Functions

Solving for A(z) gives

∑
n≥0

anzn = A(z) = 1
(1− z)2 =

∑
n≥0

(n+ 1)zn

Hence, an = n+ 1.
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Some Generating Functions

n-th sequence element generating function

1
1

1− z

n+ 1
1

(1− z)2(
n+k
n

) 1
(1− z)k+1

n
z

(1− z)2

an 1
1− az

n2 z(1+ z)
(1− z)3

1
n!

z(1+ z)
(1− z)3
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Some Generating Functions

n-th sequence element generating function

cfn cF

fn + gn F +G∑n
i=0 fign−i F ·G

fn−k (n ≥ k); 0 otw. zkF

∑n
i=0 fi

F(z)
1− z

nfn z
dF(z)

dz

cnfn F(cz)
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Solving Recursions with Generating Functions

1. Set A(z) =∑n≥0 anzn.

2. Transform the right hand side so that boundary condition

and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the

right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:

ñ partial fraction decomposition (Partialbruchzerlegung)
ñ lookup in tables

6. The coefficients of the resulting power series are the an.
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Example: an = 2an−1, a0 = 1

1. Set up generating function:

A(z) =
∑
n≥0

anzn

2. Transform right hand side so that recurrence can be plugged

in:

A(z) = a0 +
∑
n≥1

anzn

2. Plug in:

A(z) = 1+
∑
n≥1

(2an−1)zn
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Example: an = 2an−1, a0 = 1

3. Transform right hand side so that infinite sums can be

replaced by A(z) or by simple function.

A(z) = 1+
∑
n≥1

(2an−1)zn

= 1+ 2z
∑
n≥1

an−1zn−1

= 1+ 2z
∑
n≥0

anzn

= 1+ 2z ·A(z)

4. Solve for A(z).

A(z) = 1
1− 2z
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Example: an = 2an−1, a0 = 1

5. Rewrite f(n) as a power series:

∑
n≥0

anzn = A(z) = 1
1− 2z

=
∑
n≥0

2nzn
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Example: an = 3an−1 + n, a0 = 1

1. Set up generating function:

A(z) =
∑
n≥0

anzn
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Example: an = 3an−1 + n, a0 = 1

2./3. Transform right hand side:

A(z) =
∑
n≥0

anzn

= a0 +
∑
n≥1

anzn

= 1+
∑
n≥1

(3an−1 +n)zn

= 1+ 3z
∑
n≥1

an−1zn−1 +
∑
n≥1

nzn

= 1+ 3z
∑
n≥0

anzn +
∑
n≥0

nzn

= 1+ 3zA(z)+ z
(1− z)2
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Example: an = 3an−1 + n, a0 = 1

4. Solve for A(z):

A(z) = 1+ 3zA(z)+ z
(1− z)2

gives

A(z) = (1− z)2 + z
(1− 3z)(1− z)2 =

z2 − z + 1
(1− 3z)(1− z)2
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Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2 − z + 1
(1− 3z)(1− z)2

!= A
1− 3z

+ B
1− z +

C
(1− z)2

This leads to the following conditions:

A+ B + C = 1

2A+ 4B + 3C = 1

A+ 3B = 1

which gives

A = 7
4
B = −1

4
C = −1

2
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Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

A(z) = 7
4
· 1

1− 3z
− 1

4
· 1

1− z −
1
2
· 1
(1− z)2

= 7
4
·
∑
n≥0

3nzn − 1
4
·
∑
n≥0

zn − 1
2
·
∑
n≥0

(n+ 1)zn

=
∑
n≥0

(7
4
· 3n − 1

4
− 1

2
(n+ 1)

)
zn

6. This means an = 7
43n − 1

2n− 3
4 .
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6.5 Transformation of the Recurrence

Example 9
f0 = 1

f1 = 2

fn = fn−1 · fn−2 for n ≥ 2 .

Define

gn := logfn .

Then

gn = gn−1 + gn−2 for n ≥ 2

g1 = log 2 = 1, g0 = 0 (fÃČÅŠr log = log2 )

gn = Fn (n-th Fibonacci number)

fn = 2Fn
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6.5 Transformation of the Recurrence

Example 10
f1 = 1

fn = 3fn
2
+n; for n = 2k ;

Define

gk := f2k .
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6.5 Transformation of the Recurrence

Example 10

Then:
g0 = 1

gk = 3gk−1 + 2k, k ≥ 1

We get,

gk = 3k+1 − 2k+1, hence

fn = 3 · 3k − 2 · 2k

= 3(2log 3)k − 2 · 2k

= 3(2k)log 3 − 2 · 2k

= 3nlog 3 − 2n .
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