
12

Greedy-algorithm:

- ightharpoonup start with f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible

(C) Ernst Mayr, Harald Räcke

411

Augmenting Path Algorithm

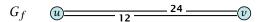
Definition 50

An augmenting path with respect to flow f, is a path in the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 45 FordFulkerson(G = (V, E, c))

1: Initialize $f(e) \leftarrow 0$ for all edges.

2: **while** \exists augmenting path p in G_f **do**


augment as much flow along p as possible.

The Residual Graph

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- G_f has edge e'_1 with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e_2' with with capacity $\max\{0, c(e_2) - f(e_2) + f(e_1)\}.$

EADS
© Ernst Mayr, Harald Räcke

12.1 Generic Augmenting Path

410

Augmenting Path Algorithm

Theorem 51

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 52

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- 1. There exists a cut A, B such that val(f) = cap(A, B).
- 2. Flow f is a maximum flow.
- 3. There is no augmenting path w.r.t. f.

 \Box

Augmenting Path Algorithm

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

- $3. \Rightarrow 1.$
 - Let f be a flow with no augmenting paths.
 - ▶ Let *A* be the set of vertices reachable from *s* in the residual graph along non-zero capacity edges.
- ▶ Since there is no augmenting path we have $s \in A$ and $t \notin A$.

EADS
© Ernst Mayr, Harald Räcke

12.1 Generic Augmenting Path

Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity $c_f(e)$ remains integral troughout the algorithm.

Augmenting Path Algorithm

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
$$= \sum_{e \in out(A)} c(e)$$
$$= cap(A, V \setminus A)$$

This finishes the proof.

Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

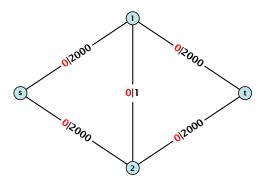
EADS © Ernst Mayr, Harald Räcke

12.1 Generic Augmenting Path

414

Lemma 53

The algorithm terminates in at most $val(f^*) \leq nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time O(m). This gives a total running time of O(nmC).


Theorem 54

If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

413

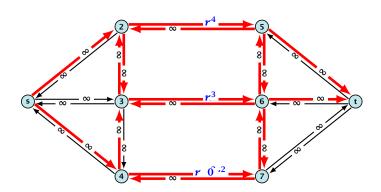
A bad input

Problem: The running time may not be polynomial.

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

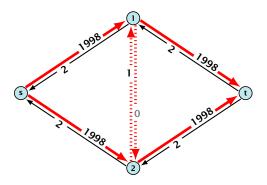
EADS © Ernst Mayr, Harald Räcke


12.1 Generic Augmenting Path

417

419

A Pathological Input


Let $r = \frac{1}{2}(\sqrt{5} - 1)$. Then $r^{n+2} = r^n - r^{n+1}$.

Running time may be infinite!!!

A bad input

Problem: The running time may not be polynomial.

Ouestion:

Can we tweak the algorithm so that the running time is polynomial in the input length?

EADS © Ernst Mayr, Harald Räcke

12.1 Generic Augmenting Path

418

How to choose augmenting paths?

- We need to find paths efficiently.
- ▶ We want to guarantee a small number of iterations.

Several possibilities:

- ► Choose path with maximum bottleneck capacity.
- ► Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.