12

Greedy-algorithm:

- start with $f(e)=0$ everywhere
- find an s - t path with $f(e)<c(e)$ on every edge
- augment flow along the path
- repeat as long as possible

12

Greedy-algorithm:

- start with $f(e)=0$ everywhere
- find an s - t path with $f(e)<c(e)$ on every edge
- augment flow along the path
- repeat as long as possible

12

Greedy-algorithm:

- start with $f(e)=0$ everywhere
- find an s - t path with $f(e)<c(e)$ on every edge
- augment flow along the path
- repeat as long as possible

12

Greedy-algorithm:

- start with $f(e)=0$ everywhere
- find an s - t path with $f(e)<c(e)$ on every edge
- augment flow along the path
- repeat as long as possible

EADS
12.1 Generic Augmenting Path

The Residual Graph

From the graph $G=(V, E, c)$ and the current flow f we construct an auxiliary graph $G_{f}=\left(V, E_{f}, c_{f}\right)$ (the residual graph):

The Residual Graph

From the graph $G=(V, E, c)$ and the current flow f we construct an auxiliary graph $G_{f}=\left(V, E_{f}, c_{f}\right)$ (the residual graph):

- Suppose the original graph has edges $e_{1}=(u, v)$, and $e_{2}=(v, u)$ between u and v.

The Residual Graph

From the graph $G=(V, E, c)$ and the current flow f we construct an auxiliary graph $G_{f}=\left(V, E_{f}, c_{f}\right)$ (the residual graph):

- Suppose the original graph has edges $e_{1}=(u, v)$, and $e_{2}=(v, u)$ between u and v.
- G_{f} has edge e_{1}^{\prime} with capacity $\max \left\{0, c\left(e_{1}\right)-f\left(e_{1}\right)+f\left(e_{2}\right)\right\}$ and e_{2}^{\prime} with with capacity $\max \left\{0, c\left(e_{2}\right)-f\left(e_{2}\right)+f\left(e_{1}\right)\right\}$.

The Residual Graph

From the graph $G=(V, E, c)$ and the current flow f we construct an auxiliary graph $G_{f}=\left(V, E_{f}, c_{f}\right)$ (the residual graph):

- Suppose the original graph has edges $e_{1}=(u, v)$, and $e_{2}=(v, u)$ between u and v.
- G_{f} has edge e_{1}^{\prime} with capacity $\max \left\{0, c\left(e_{1}\right)-f\left(e_{1}\right)+f\left(e_{2}\right)\right\}$ and e_{2}^{\prime} with with capacity $\max \left\{0, c\left(e_{2}\right)-f\left(e_{2}\right)+f\left(e_{1}\right)\right\}$.

G_{f}

24

Augmenting Path Algorithm

Definition 50
An augmenting path with respect to flow f, is a path in the auxiliary graph G_{f} that contains only edges with non-zero capacity.

Augmenting Path Algorithm

Definition 50
An augmenting path with respect to flow f, is a path in the auxiliary graph G_{f} that contains only edges with non-zero capacity.

$$
\begin{aligned}
& \hline \text { Algorithm } 45 \text { FordFulkerson }(G=(V, E, c)) \\
& \hline \text { 1: Initialize } f(e) \leftarrow 0 \text { for all edges. } \\
& \text { 2: while } \exists \text { augmenting path } p \text { in } G_{f} \text { do } \\
& \text { 3: } \quad \text { augment as much flow along } p \text { as possible. }
\end{aligned}
$$

Augmenting Path Algorithm

Augmenting Path Algorithm

Theorem 51
A flow f is a maximum flow iff there are no augmenting paths.

Augmenting Path Algorithm

Theorem 51
A flow f is a maximum flow iff there are no augmenting paths.
Theorem 52
The value of a maximum flow is equal to the value of a minimum cut.

Augmenting Path Algorithm

Theorem 51
A flow f is a maximum flow iff there are no augmenting paths.
Theorem 52
The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A, B such that $\operatorname{val}(f)=\operatorname{cap}(A, B)$.

Augmenting Path Algorithm

Theorem 51
A flow f is a maximum flow iff there are no augmenting paths.
Theorem 52
The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A, B such that $\operatorname{val}(f)=\operatorname{cap}(A, B)$.
2. Flow f is a maximum flow.

Augmenting Path Algorithm

Theorem 51
A flow f is a maximum flow iff there are no augmenting paths.
Theorem 52
The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A, B such that $\operatorname{val}(f)=\operatorname{cap}(A, B)$.
2. Flow f is a maximum flow.
3. There is no augmenting path w.r.t. f.

Augmenting Path Algorithm

Augmenting Path Algorithm

$1 . \Rightarrow 2$.
This we already showed.

Augmenting Path Algorithm

$1 . \Rightarrow 2$.
This we already showed.
2. $\Rightarrow 3$.

If there were an augmenting path, we could improve the flow. Contradiction.

Augmenting Path Algorithm

$1 . \Rightarrow 2$.
This we already showed.
2. $\Rightarrow 3$.

If there were an augmenting path, we could improve the flow.
Contradiction.
3. $\Rightarrow 1$.

- Let f be a flow with no augmenting paths.

Augmenting Path Algorithm

1. $\Rightarrow 2$.

This we already showed.
2. $\Rightarrow 3$.

If there were an augmenting path, we could improve the flow.
Contradiction.
3. $\Rightarrow 1$.

- Let f be a flow with no augmenting paths.
- Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.

Augmenting Path Algorithm

1. $\Rightarrow 2$.

This we already showed.
2. $\Rightarrow 3$.

If there were an augmenting path, we could improve the flow.
Contradiction.
3. $\Rightarrow 1$.

- Let f be a flow with no augmenting paths.
- Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.
- Since there is no augmenting path we have $s \in A$ and $t \notin A$.

Augmenting Path Algorithm

$\operatorname{val}(f)$

Augmenting Path Algorithm

$$
\operatorname{val}(f)=\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e)
$$

Augmenting Path Algorithm

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e) \\
& =\sum_{e \in \operatorname{out}(A)} c(e)
\end{aligned}
$$

Augmenting Path Algorithm

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e) \\
& =\sum_{e \in \operatorname{out}(A)} c(e) \\
& =\operatorname{cap}(A, V \backslash A)
\end{aligned}
$$

Augmenting Path Algorithm

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e) \\
& =\sum_{e \in \operatorname{out}(A)} c(e) \\
& =\operatorname{cap}(A, V \backslash A)
\end{aligned}
$$

This finishes the proof.

Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

Analysis

Assumption:

All capacities are integers between 1 and C.

Analysis

Assumption:
All capacities are integers between 1 and C.
Invariant:
Every flow value $f(e)$ and every residual capacity $c_{f}(e)$ remains integral troughout the algorithm.

Lemma 53

The algorithm terminates in at most $\operatorname{val}\left(f^{*}\right) \leq n C$ iterations, where f^{*} denotes the maximum flow. Each iteration can be implemented in time $\mathcal{O}(m)$. This gives a total running time of $\mathcal{O}(\mathrm{nmC})$.

Lemma 53

The algorithm terminates in at most $\operatorname{val}\left(f^{*}\right) \leq n C$ iterations, where f^{*} denotes the maximum flow. Each iteration can be implemented in time $\mathcal{O}(m)$. This gives a total running time of \mathcal{O} (nmC).

Theorem 54
If all capacities are integers, then there exists a maximum flow for which every flow value $f(e)$ is integral.

A bad input

Problem: The running time may not be polynomial.

A bad input

Problem: The running time may not be polynomial.

A bad input

Problem: The running time may not be polynomial.

A bad input

Problem: The running time may not be polynomial.

A bad input

Problem: The running time may not be polynomial.

A bad input

Problem: The running time may not be polynomial.

A bad input

Problem: The running time may not be polynomial.

A bad input

Problem: The running time may not be polynomial.

A bad input

Problem: The running time may not be polynomial.

A bad input

Problem: The running time may not be polynomial.

A bad input

Problem: The running time may not be polynomial.

Question:
Can we tweak the algorithm so that the running time is polynomial in the input length?

A Pathological Input

Let $r=\frac{1}{2}(\sqrt{5}-1)$. Then $r^{n+2}=r^{n}-r^{n+1}$.

Running time may be infinite!!!

How to choose augmenting paths?

How to choose augmenting paths?

- We need to find paths efficiently.

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

