6 Recurrences

```
Algorithm 2 mergesort(list \(L\) )
    1: \(s \leftarrow \operatorname{size}(L)\)
    2: if \(s \leq 1\) return \(L\)
    3: \(L_{1} \leftarrow L\left[1 \cdots\left\lfloor\frac{s}{2}\right\rfloor\right]\)
    4: \(L_{2} \leftarrow L\left[\left\lceil\frac{s}{2}\right\rceil \cdots n\right]\)
    5: mergesort \(\left(L_{1}\right)\)
    6: mergesort \(\left(L_{2}\right)\)
    7: \(L \leftarrow \operatorname{merge}\left(L_{1}, L_{2}\right)\)
    8: return \(L\)
```

This algorithm requires

$$
T(n) \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+\mathcal{O}(n)
$$

comparisons when $n>1$ and 0 comparisons when $n \leq 1$.

Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of algorithms this theorem can be used to obtain tight asymptotic bounds. It does not provide exact solutions.
3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this method.

Recurrences

How do we bring the expression for the number of comparisons (\approx running time) into a closed form?

For this we need to solve the recurrence

6.1 Guessing+Induction

First we need to get rid of the \mathcal{O}-notation in our recurrence:

$$
T(n) \leq \begin{cases}2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n & n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Assume that instead we had

$$
T(n) \leq \begin{cases}2 T\left(\frac{n}{2}\right)+c n & n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

6.1 Guessing+Induction

Suppose we guess $T(n) \leq d n \log n$ for a constant d. Then

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \leq 2\left(\frac{n}{2} \log \frac{n}{2}\right)+c n \\
& =d n(\log n-1)+c n \\
& =d n \log n+(c-d) n \\
& =d n \log n
\end{aligned}
$$

if we choose $d \geq c$.

Formally one would make an induction proof, where the above is the induction step. The base case is usually trivial.

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?
If we do not do this we instead consider the following recurrence:

$$
T(n) \leq \begin{cases}2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n & n \geq 16 \\ b & \text { otherwise }\end{cases}
$$

Note that we can do this as for constant-sized inputs the running time is always some constant (b in the above case).

6.1 Guessing+Induction

Guess: $T(n) \leq d n \log n$.
$T(n) \leq \begin{cases}2 T\left(\frac{n}{2}\right)+c n & n \geq 16 \\ b & \text { otw. }\end{cases}$

Proof. (by induction)

- base case $(2 \leq n<16)$: true if we choose $d \geq b$.
- induction step $2 \ldots n-1 \rightarrow n$:

Suppose statem. is true for $n^{\prime} \in\{2, \ldots, n-1\}$, and $n \geq 16$. We prove it for n

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \leq 2\left(\frac{n}{2} \log \frac{n}{2}\right)+c n \\
& =d n(\log n-1)+c n \\
& =d n \log n+(c-d) n \\
& =d n \log n
\end{aligned}
$$

- - Note that this proves the-----statement for $n \in \mathbb{N}_{\geq 2}$, as the statement is wrong for $n=1$.
- The base case is usually omitted, as it is the same for different recurrences.

Hence, statement is true if we choose $d \geq c$.

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
\begin{aligned}
T(n) & \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n \\
& \leq 2\left(d\left\lceil\frac{n}{2}\right\rceil \log \left\lceil\frac{n}{2}\right\rceil\right)+c n \\
\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2}+1 & \leq 2(d(n / 2+1) \log (n / 2+1))+c n \\
\frac{n}{2}+1 \leq \frac{9}{16} n & \leq d n \log \left(\frac{9}{16} n\right)+2 d \log n+c n \\
\log \frac{9}{16} n=\log n+(\log 9-4) & =d n \log n+(\log 9-4) d n+2 d \log n+c n \\
\log n \leq \frac{n}{4} & =d n \log n+(\log 9-3.5) d n+c n \\
& \leq d n \log n-0.33 d n+c n \\
& \leq d n \log n
\end{aligned}
$$

for a suitable choice of d.

