6 Recurrences

(
Algorithm 2 mergesort(list L)		
1: $s \leftarrow size(L)$		
2: if $s \leq 1$ return L		
3: $L_1 \leftarrow L[1 \cdots \lfloor \frac{s}{2} \rfloor]$		
4: $L_2 \leftarrow L[\lceil \frac{s}{2} \rceil \cdots n]$		
5: mergesort(L_1)		
6: mergesort(L_2)		
7: $L \leftarrow \operatorname{merge}(L_1, L_2)$		
8: return L		

This algorithm requires

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + \mathcal{O}(n)$$

comparisons when n > 1 and 0 comparisons when $n \le 1$.

החוחר	EADS
	© Ernst Mayr, Harald Räcke

33

Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of algorithms this theorem can be used to obtain tight asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this method.

Recurrences How do we bring the expression for the number of comparisons (\approx running time) into a closed form? For this we need to solve the recurrence. EADS © Ernst Mayr, Harald Räcke EADS 6 Recurrences 34

6.1 Guessing+Induction

First we need to get rid of the O-notation in our recurrence:

$$T(n) \leq \begin{cases} 2T(\left\lceil \frac{n}{2} \right\rceil) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

Assume that instead we had

EADS

© Ernst Mayr, Harald Räcke

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

EADS © Ernst Mayr, Harald Räcke

35

6.1 Guessing+Induction

Suppose we guess $T(n) \le dn \log n$ for a constant d. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$
$$= dn\log n + (c - d)n$$
$$= dn\log n$$

if we choose $d \ge c$.

Formally one would make an induction proof, where the above is the induction step. The base case is usually trivial.

			1
EADS	6.1 Guessing+Induction		
🛛 🕒 🗋 🕜 Ernst Mayr, Harald Räcke		37	

6.1 Guessing+Induction

EADS

© Ernst Mayr, Harald Räcke

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following recurrence:

 $T(n) \le \begin{cases} 2T(\left\lceil \frac{n}{2} \right\rceil) + cn & n \ge 16\\ b & \text{otherwise} \end{cases}$

Note that we can do this as for constant-sized inputs the running time is always some constant (*b* in the above case).

6.1 Guessing+Induction

Guess: $T(n) \leq dn \log n$.

Proof. (by induction) $(n) \leq un \log n$.

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

6.1 Guessing+Induction

Suppose statem. is true for $n' \in \{2, ..., n-1\}$, and $n \ge 16$. We prove it for n:

$$T(n) \leq 2T\left(\frac{n}{2}\right) + cn$$

$$\leq 2\left(\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$= dn\log n + (c - d)n$$

$$= dn\log n$$
• Note that this proves the statement for $n \in \mathbb{N}_{\geq 2}$, as the statement is wrong for $n = 1$.
• The base case is usually omitted, as it is the same for different recurrences.

 $T(n) \leq$

 $2T\left(\frac{n}{2}\right) + cn \quad n \ge 16$

otw.

Hence, statement is true if we choose $d \ge c$.

6.1 Guessing+Induction

We also make a guess of $T(n) \le dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2} + 1\right\rceil \leq 2\left(d(n/2+1)\log(n/2+1)\right) + cn$$

$$\frac{n}{2} + 1 \leq \frac{9}{16}n \leq dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$\log \frac{9}{16}n = \log n + (\log 9 - 4) = dn\log n + (\log 9 - 4)dn + 2d\log n + cn$$

$$\log n \leq \frac{n}{4} = dn\log n + (\log 9 - 3.5)dn + cn$$

$$\leq dn\log n - 0.33dn + cn$$

$$\leq dn\log n$$

for a suitable choice of d.

EADS © Ernst Mayr, Harald Räcke

39