7.2 Red Black Trees

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

EADS
© Ernst Mayr, Harald Räcke

120

7.2 Red Black Trees

Lemma 12

A red-black tree with n internal nodes has height at most $O(\log n)$.

Definition 13

The black height $\mathrm{bh}(v)$ of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:

Lemma 14

A sub-tree of black height $\mathrm{bh}(v)$ in a red black tree contains at least $2^{\mathrm{bh}(v)}-1$ internal vertices.

7.2 Red Black Trees

Red Black Trees: Example

EADS © Ernst Mayr, Harald Räcke 7.2 Red Black Trees

121

7.2 Red Black Trees

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

- ▶ If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- ▶ The black height of v is 0.
- ► The sub-tree rooted at v contains $0 = 2^{\mathrm{bh}(v)} 1$ inner vertices.

7.2 Red Black Trees

Proof (cont.)

induction step

- ▶ Supose v is a node with height(v) > 0.
- v has two children with strictly smaller height.
- ▶ These children (c_1, c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) - 1.$
- ▶ By induction hypothesis both sub-trees contain at least $2^{\operatorname{bh}(v)-1}-1$ internal vertices.
- ▶ Then T_v contains at least $2(2^{bh(v)-1}-1)+1 \ge 2^{bh(v)}-1$ vertices.

EADS © Ernst Mayr, Harald Räcke

7.2 Red Black Trees

124

7.2 Red Black Trees

We need to adapt the insert and delete operations so that the red black properties are maintained.

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 > n$.

Hence, $h \le 2 \log n + 1 = \mathcal{O}(\log n)$.

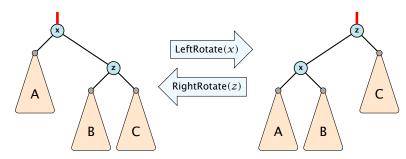
EADS
© Ernst Mayr, Harald Räcke

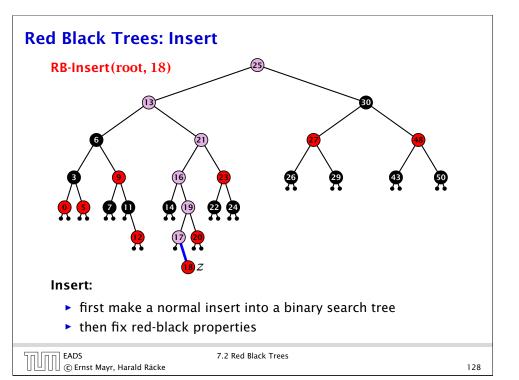
7.2 Red Black Trees

125

Rotations

The properties will be maintained through rotations:





Red Black Trees: Insert Algorithm 10 InsertFix(z)1: while parent[z] \neq null and col[parent[z]] = red do **if** parent[z] = left[gp[z]] **then** z in left subtree of grandparent $uncle \leftarrow right[grandparent[z]]$ 3: if col[uncle] = red then 4: Case 1: uncle red $col[p[z]] \leftarrow black; col[u] \leftarrow black;$ 5: $col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$ 6: else 7: Case 2: uncle black if z = right[parent[z]] then 2a: z right child $z \leftarrow p[z]$; LeftRotate(z); 9: $col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red; 2b: z left child$ 10: RightRotate(gp[z]); 11: else same as then-clause but right and left exchanged 12: 13: $col(root[T]) \leftarrow black;$ 7.2 Red Black Trees

130

© Ernst Mavr. Harald Räcke

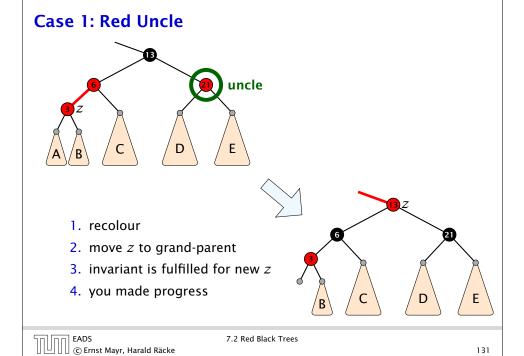
Red Black Trees: Insert

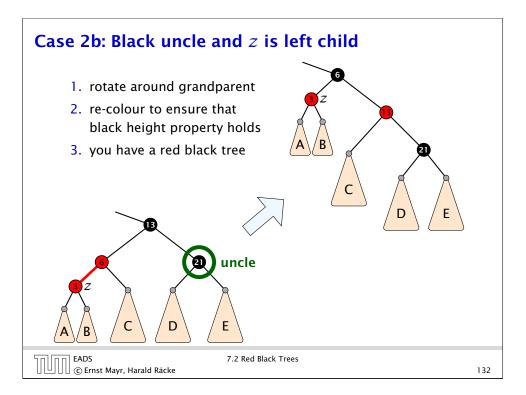
Invariant of the fix-up algorithm:

- ► z is a red node
- ▶ the black-height property is fulfilled at every node
- ▶ the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

7.2 Red Black Trees



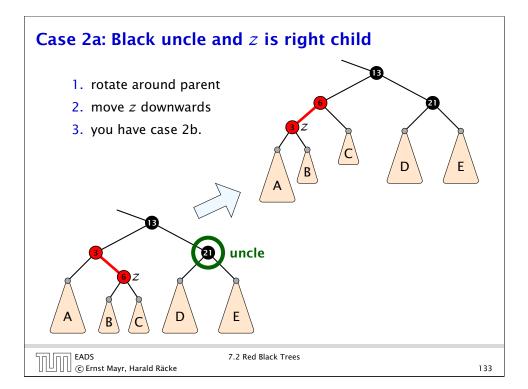


Red Black Trees: Insert

Running time:

- ▶ Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- ► Case 2a → Case 2b → red-black tree
- ► Case 2b → red-black tree

Performing step one $\mathcal{O}(\log n)$ times and every other step at most once, we get a red-black tree. Hence $\mathcal{O}(\log n)$ re-colourings and at most 2 rotations.



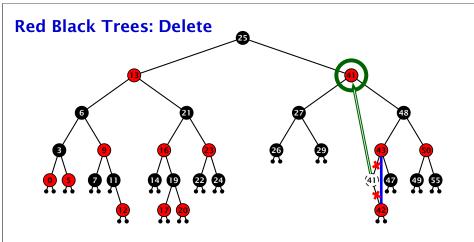
Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems.

- ▶ Parent and child of *x* were red; two adjacent red vertices.
- ▶ If you delete the root, the root may now be red.
- ► Every path from an ancestor of *x* to a descendant leaf of *x* changes the number of black nodes. Black height property might be violated.



Case 3:

Element has two children

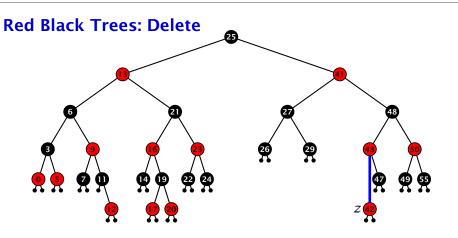
- ▶ do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Invariant of the fix-up algorihtm

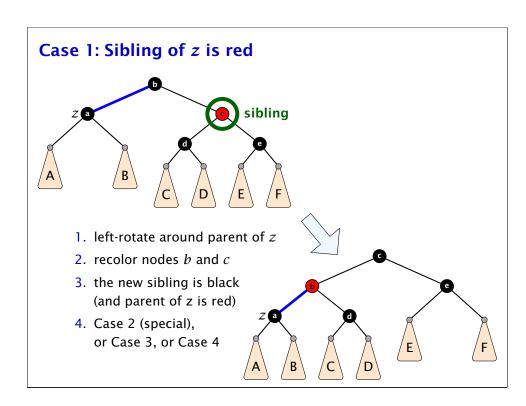
- ▶ the node *z* is black
- ▶ if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

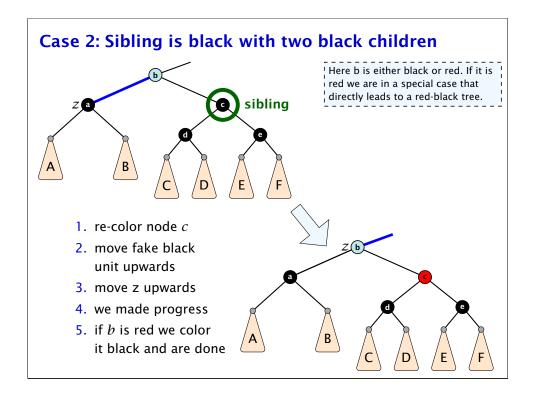
Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

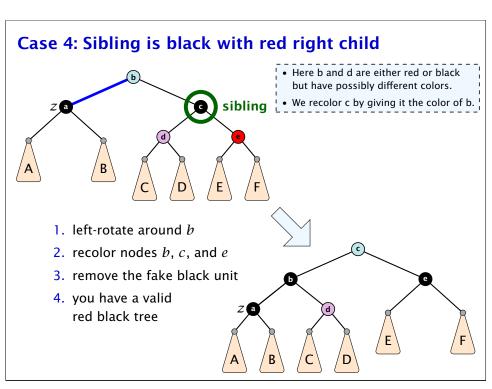


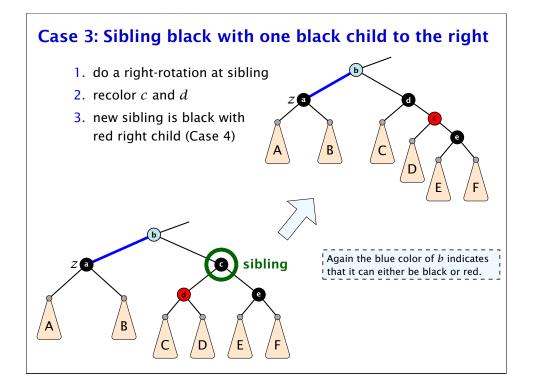
Delete:

- deleting black node messes up black-height property
- ▶ if z is red, we can simply color it black and everything is fine
- ► the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.









Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- ► Case 1 → Case 2 (special) → red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 → Case 4 → red black tree
- Case 3 → Case 4 → red black tree
- Case 4 → red black tree

Performing Case 2 $\mathcal{O}(\log n)$ times and every other step at most once, we get a red black tree. Hence, $O(\log n)$ re-colourings and at most 3 rotations.