Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

Lemma 12

A red-black tree with n internal nodes has height at most $O(\log n)$.

Definition 13

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:

Lemma 14

A sub-tree of black height bh(v) in a red black tree contains at least $2^{bh(v)} - 1$ internal vertices.

Proof of Lemma 4.

Induction on the height of *v*.

base case (height(v) = 0)

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.
- ► The sub-tree rooted at v contains 0 = 2^{bh(v)} 1 inner vertices.

Proof (cont.)

induction step

- Supose v is a node with height(v) > 0.
- ► *v* has two children with strictly smaller height.
- ► These children (c_1, c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- ► By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ► Then T_v contains at least $2(2^{bh(v)-1} 1) + 1 \ge 2^{bh(v)} 1$ vertices.

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \ge n$.

Hence, $h \leq 2 \log n + 1 = \mathcal{O}(\log n)$.

We need to adapt the insert and delete operations so that the red black properties are maintained.

Rotations

The properties will be maintained through rotations:

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

EADS © Ernst Mayr, Harald Räcke

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Algorithm 10 InsertFix(z)		
1: while $parent[z] \neq null$ and $col[parent[z]] = red$ do		
2:	if $parent[z] = left[gp[z]]$ then z in left subtree of grandparent	
3:	$uncle \leftarrow right[grandparent[z]]$	
4:	if col[<i>uncle</i>] = red then	Case 1: uncle red
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$	
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$	
7:	else	Case 2: uncle black
8:	if $z = right[parent[z]]$ then	2a: z right child
9:	$z \leftarrow p[z]; LeftRotate(z);$	
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red; 2b: z \text{ left child}$	
11:	RightRotate $(gp[z]);$	
12:	12: else same as then-clause but right and left exchanged	
13: $col(root[T]) \leftarrow black;$		

Case 1: Red Uncle

- 1. recolour
- 2. move z to grand-parent
- 3. invariant is fulfilled for new z
- 4. you made progress

Case 2b: Black uncle and z is left child

- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree

Case 2a: Black uncle and z is right child

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case $2a \rightarrow Case 2b \rightarrow red-black$ tree
- Case 2b → red-black tree

Performing step one $O(\log n)$ times and every other step at most once, we get a red-black tree. Hence $O(\log n)$ re-colourings and at most 2 rotations.

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everytting is fine.

If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

Case 3:

Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

Red Black Trees: Delete

Invariant of the fix-up algorihtm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

Case 1: Sibling of z is red

- 1. left-rotate around parent of z
- 2. recolor nodes *b* and *c*
- 3. the new sibling is black (and parent of z is red)
- 4. Case 2 (special), or Case 3, or Case 4

Case 2: Sibling is black with two black children

Case 3: Sibling black with one black child to the right

- 1. do a right-rotation at sibling
- **2.** recolor c and d
- 3. new sibling is black with red right child (Case 4)

Case 4: Sibling is black with red right child

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 \rightarrow Case 4 \rightarrow red black tree
- Case 3 → Case 4 → red black tree
- Case 4 → red black tree

Performing Case 2 $O(\log n)$ times and every other step at most once, we get a red black tree. Hence, $O(\log n)$ re-colourings and at most 3 rotations.

