Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

FADS © Ernst Mavr. Harald Räcke

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

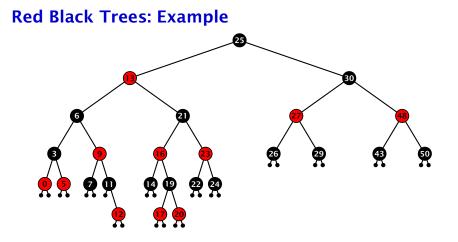
The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data



▲ □ ▶ ▲ 圖 ▶ ▲ 필 ▶ ▲ 필 ▶
 121/596

Lemma 12

A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Definition 13

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:

Lemma 14

A sub-tree of black height bh(v) in a red black tree contains at least $2^{bh(v)} - 1$ internal vertices.

7.2 Red Black Trees

▲ □ ▶ ▲ 酉 ▶ ▲ 클 ▶ ▲ 클 ▶
 122/596

Lemma 12

A red-black tree with n internal nodes has height at most $O(\log n)$.

Definition 13

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

```
We first show:
Lemma 14
A sub-tree of black height bh(v) in a red black tree contains at
least 2^{bh(v)} - 1 internal vertices.
```


Lemma 12

A red-black tree with n internal nodes has height at most $O(\log n)$.

Definition 13

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:

Lemma 14

A sub-tree of black height bh(v) in a red black tree contains at least $2^{bh(v)} - 1$ internal vertices.

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.
- The sub-tree rooted at ν contains $0=2^{bl(\nu)}-1$ inner vertices.

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

- If height(v) (maximum distance bive v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.1
- The sub-tree nonted at ν contains $0 = 2^{bl(\nu)} = 1$ inner vertices,

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.

The sub-tree rooted at v contains 0 = 2^{bh(v)} − 1 inner vertices.

Proof of Lemma 4.

Induction on the height of *v*.

base case (height(v) = 0)

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.
- ► The sub-tree rooted at v contains 0 = 2^{bh(v)} 1 inner vertices.

Proof of Lemma 4.

Induction on the height of *v*.

base case (height(v) = 0)

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.
- ► The sub-tree rooted at v contains 0 = 2^{bh(v)} 1 inner vertices.

Proof (cont.)

induction step

- > Supose v is a node with $\operatorname{height}(v) > 0.1$
- v has two children with strictly smaller height.
- These children (c_1, c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- By induction hypothesis both sub-trees contain at least 2^{bb(x)-1} — 1 internal vertices.
- Then \mathcal{T}_{θ} contains at least $2(2^{bb}(v) 1 = 1) + 1 \ge 2^{bb}(v) = 1 = 1$ vertices.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- ▶ *v* has two children with strictly smaller height.
- ► These children (c_1, c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ► Then T_v contains at least $2(2^{bh(v)-1} 1) + 1 \ge 2^{bh(v)} 1$ vertices.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- v has two children with strictly smaller height.
- ► These children (c_1, c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ► Then T_v contains at least $2(2^{bh(v)-1} 1) + 1 \ge 2^{bh(v)} 1$ vertices.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- v has two children with strictly smaller height.
- ► These children (c_1, c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ► Then T_v contains at least $2(2^{bh(v)-1} 1) + 1 \ge 2^{bh(v)} 1$ vertices.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- v has two children with strictly smaller height.
- ► These children (c_1, c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- ► By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ► Then T_v contains at least $2(2^{bh(v)-1} 1) + 1 \ge 2^{bh(v)} 1$ vertices.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- v has two children with strictly smaller height.
- ► These children (c₁, c₂) either have bh(c_i) = bh(v) or bh(c_i) = bh(v) 1.
- ► By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ► Then T_v contains at least $2(2^{bh(v)-1} 1) + 1 \ge 2^{bh(v)} 1$ vertices.

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \ge n$.

Hence, $h \le 2 \log n + 1 = \mathcal{O}(\log n)$.

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \ge n$.

Hence, $h \leq 2 \log n + 1 = \mathcal{O}(\log n)$.

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \ge n$.

Hence, $h \leq 2 \log n + 1 = \mathcal{O}(\log n)$.

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \ge n$.

Hence, $h \le 2 \log n + 1 = \mathcal{O}(\log n)$.

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \ge n$.

Hence, $h \le 2 \log n + 1 = \mathcal{O}(\log n)$.

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

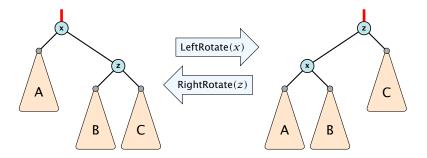
The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \ge n$.

Hence,
$$h \leq 2 \log n + 1 = \mathcal{O}(\log n)$$
.

We need to adapt the insert and delete operations so that the red black properties are maintained.

Rotations

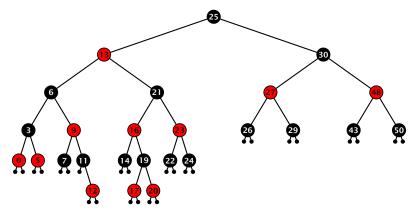
The properties will be maintained through rotations:



7.2 Red Black Trees

▲ □ ▶ ▲ 圖 ▶ ▲ 필 ▶ ▲ 필 ▶
 127/596

Red Black Trees: Insert

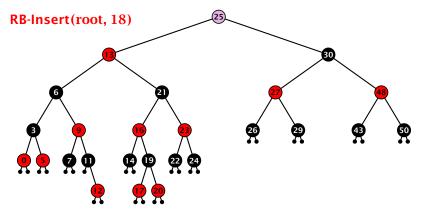


Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

EADS © Ernst Mayr, Harald Räcke

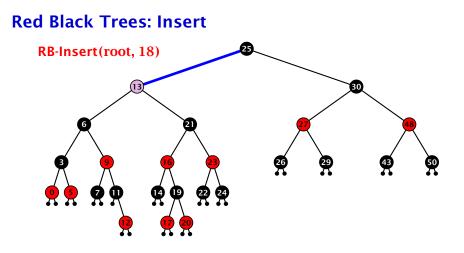
Red Black Trees: Insert



Insert:

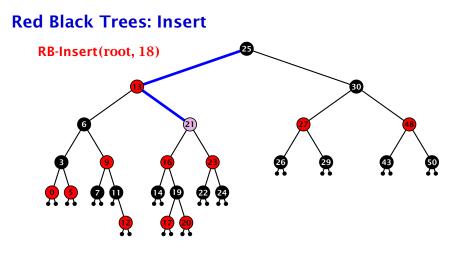
- first make a normal insert into a binary search tree
- then fix red-black properties

EADS © Ernst Mayr, Harald Räcke



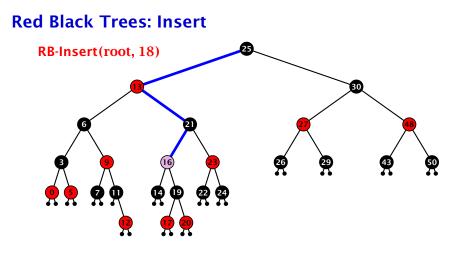
- first make a normal insert into a binary search tree
- then fix red-black properties

EADS © Ernst Mayr, Harald Räcke



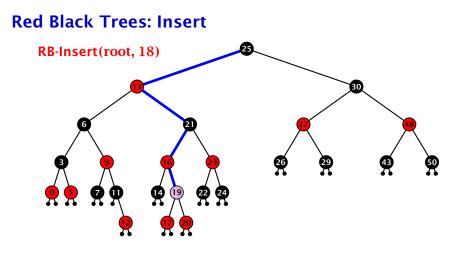
- first make a normal insert into a binary search tree
- then fix red-black properties

EADS © Ernst Mayr, Harald Räcke



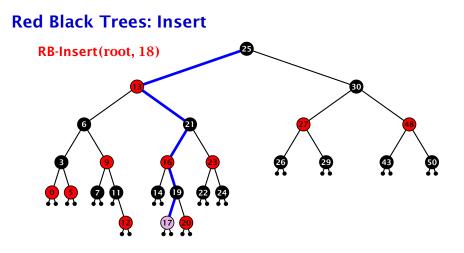
- first make a normal insert into a binary search tree
- then fix red-black properties

EADS © Ernst Mayr, Harald Räcke



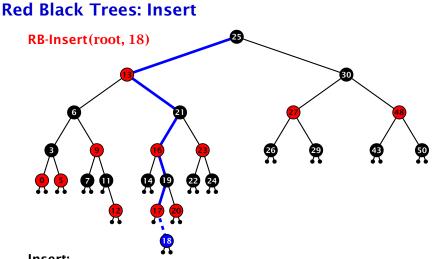
- first make a normal insert into a binary search tree
- then fix red-black properties

EADS © Ernst Mayr, Harald Räcke

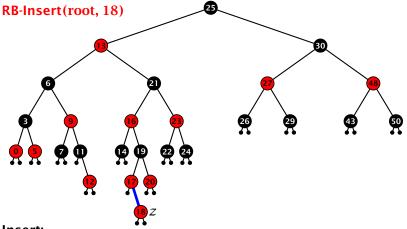


- first make a normal insert into a binary search tree
- then fix red-black properties

EADS © Ernst Mayr, Harald Räcke



- Insert:
 - first make a normal insert into a binary search tree
 - then fix red-black properties



Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

EADS © Ernst Mayr, Harald Räcke

Invariant of the fix-up algorithm:

z is a red node

- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red.
 - (most important case)
 - or the parent does not exist.
 - (violation since root must be black).

If *z* has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 or the parent does not exist
 - (violation since root must be black)
- If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

If *z* has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

If *z* has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

If *z* has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Algorithm 10 InsertFix(<i>z</i>)		
1: while $parent[z] \neq null and col[parent[z]] = red do$)	
2: if parent[z] = left[gp[z]] then		
3: $uncle \leftarrow right[grandparent[z]]$		
4: if col[<i>uncle</i>] = red then		
5: $\operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[u] \leftarrow \operatorname{black};$		
6: $\operatorname{col}[\operatorname{gp}[z]] \leftarrow \operatorname{red}; z \leftarrow \operatorname{grandparent}[z];$		
7: else		
8: if $z = right[parent[z]]$ then		
9: $z \leftarrow p[z]; LeftRotate(z);$		
10: $\operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[gp[z]] \leftarrow \operatorname{red};$		
11: RightRotate $(gp[z]);$		
12: else same as then-clause but right and left excl	hanged	
13: $col(root[T]) \leftarrow black;$		

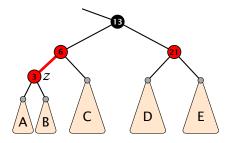
Algorithm 10 InsertFix(z)		
1: W	hile parent $[z] \neq$ null and col[parent $[z]$] = red do	
2:	if $parent[z] = left[gp[z]]$ then z in left subtree of grandparent	
3:	$uncle \leftarrow right[grandparent[z]]$	
4:	<pre>if col[uncle] = red then</pre>	
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$	
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$	
7:	else	
8:	if <i>z</i> = right[parent[<i>z</i>]] then	
9:	$z \leftarrow p[z]$; LeftRotate(z);	
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$	
11:	RightRotate $(gp[z]);$	
12:	else same as then-clause but right and left exchanged	
13: C	$ol(root[T]) \leftarrow black;$	

Algorithm 10 InsertFix(z)	
1: while parent[z] \neq null and col[parent[z]]	= red do
2: if parent[z] = left[gp[z]] then	
3: $uncle \leftarrow right[grandparent[z]]$	
4: if col[<i>uncle</i>] = red then	Case 1: uncle red
5: $\operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[u] \leftarrow \operatorname{black};$	ack;
6: $\operatorname{col}[\operatorname{gp}[z]] \leftarrow \operatorname{red}; z \leftarrow \operatorname{grandpa}$	rent[z];
7: else	
8: if $z = right[parent[z]]$ then	
9: $z \leftarrow p[z]; LeftRotate(z);$	
10: $\operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[gp[z]] \leftarrow$	← red;
11: RightRotate $(gp[z]);$	
12: else same as then-clause but right and	l left exchanged
13: $col(root[T]) \leftarrow black;$	

Alg	jorithm 10 InsertFix(z)
1:	while $parent[z] \neq null and col[parent[z]] = red do$
2:	if $parent[z] = left[gp[z]]$ then
3:	$uncle \leftarrow right[grandparent[z]]$
4:	<pre>if col[uncle] = red then</pre>
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$
7:	else Case 2: uncle black
8:	if $z = right[parent[z]]$ then
9:	$z \leftarrow p[z]$; LeftRotate(z);
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$
11:	RightRotate $(gp[z]);$
12:	else same as then-clause but right and left exchanged
13:	$col(root[T]) \leftarrow black;$

Alg	orithm 10 InsertFix(z)
1: 1	while $parent[z] \neq null and col[parent[z]] = red do$
2:	if $parent[z] = left[gp[z]]$ then
3:	$uncle \leftarrow right[grandparent[z]]$
4:	if col[<i>uncle</i>] = red then
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$
7:	else
8:	if $z = right[parent[z]]$ then 2a: z right child
9:	$z \leftarrow p[z]$; LeftRotate(z);
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$
11:	RightRotate($gp[z]$);
12:	else same as then-clause but right and left exchanged
13:	$col(root[T]) \leftarrow black;$

lgorithm 10 InsertFix(z)
: while parent[z] \neq null and col[parent[z]] = red do
2: if parent[z] = left[gp[z]] then
3: $uncle \leftarrow right[grandparent[z]]$
4: if col[<i>uncle</i>] = red then
5: $\operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[u] \leftarrow \operatorname{black};$
5: $\operatorname{col}[\operatorname{gp}[z]] \leftarrow \operatorname{red}; z \leftarrow \operatorname{grandparent}[z];$
7: else
if z = right[parent[z]] then
9: $z \leftarrow p[z]$; LeftRotate(z);
0: $\operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[gp[z]] \leftarrow \operatorname{red}; \operatorname{2b}: z \operatorname{left} \operatorname{child}$
1: RightRotate(gp[z]);
2: else same as then-clause but right and left exchanged
3: $col(root[T]) \leftarrow black;$

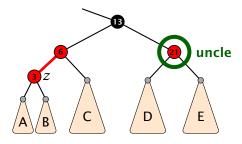


- 1. recolour
- 2. move *z* to grand-parent
- 3. invariant is fulfilled for new *2*
- 4. you made progress

EADS © Ernst Mayr, Harald Räcke

7.2 Red Black Trees

◆□▶ ◆ 쿱▶ ◆ 콜▶ ◆ 콜▶ 131/596

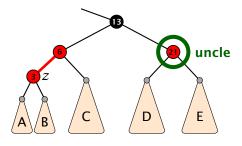


- 1. recolour
- 2. move *z* to grand-parent
- 3. invariant is fulfilled for new *2*
- 4. you made progress

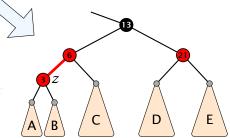
EADS © Ernst Mayr, Harald Räcke

7.2 Red Black Trees

◆□▶ ◆酉▶ ◆ 클▶ ◆ 클▶ 131/596

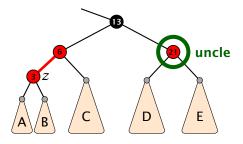


- 1. recolour
- 2. move *z* to grand-parent
- 3. invariant is fulfilled for new 2
- 4. you made progress



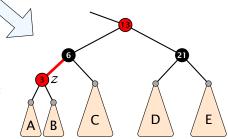
EADS © Ernst Mayr, Harald Räcke

7.2 Red Black Trees



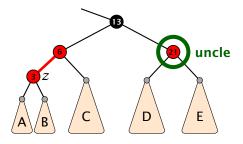
1. recolour

- 2. move *z* to grand-parent
- 3. invariant is fulfilled for new 2
- 4. you made progress



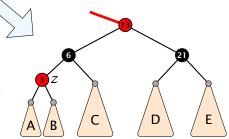
EADS © Ernst Mayr, Harald Räcke

7.2 Red Black Trees



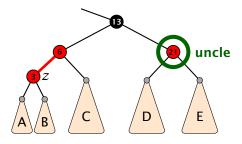
1. recolour

- 2. move *z* to grand-parent
- 3. invariant is fulfilled for new 2
- 4. you made progress

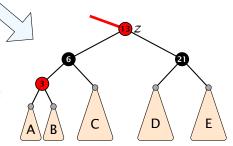


EADS © Ernst Mayr, Harald Räcke

7.2 Red Black Trees

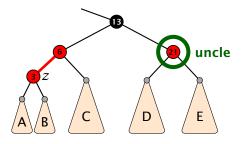


- 1. recolour
- 2. move z to grand-parent
- 3. invariant is fulfilled for new a
- you made progress

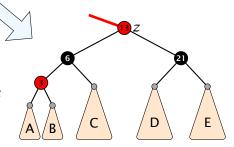


7.2 Red Black Trees

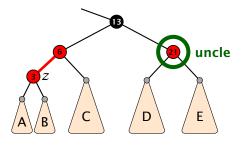
◆□▶ ◆圖▶ ◆ 불▶ ◆ 불▶
131/596



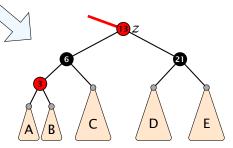
- 1. recolour
- 2. move z to grand-parent
- 3. invariant is fulfilled for new z
- you made progress



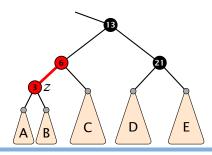
7.2 Red Black Trees



- 1. recolour
- 2. move z to grand-parent
- 3. invariant is fulfilled for new z
- 4. you made progress



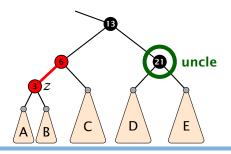
- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree



7.2 Red Black Trees

▲ □ ▶ ▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 132/596

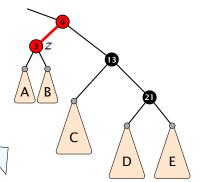
- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree

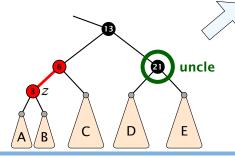


7.2 Red Black Trees

▲ □ ▶ ▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 132/596

- 1. rotate around grandparent
- re-colour to ensure that black height property holds
 you have a red black tree

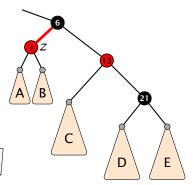


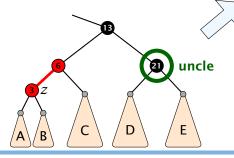


7.2 Red Black Trees

▲ □ ▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶ 132/596

- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree

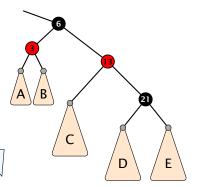


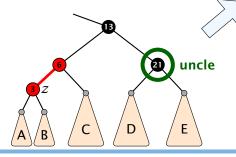


7.2 Red Black Trees

▲ □ ▶ ▲ 酉 ▶ ▲ 볼 ▶ ▲ 볼 ▶ 132/596

- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree

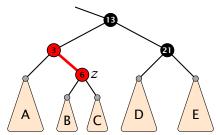




7.2 Red Black Trees

▲ □ ▶ ▲ **□** ▶ ▲ 클 ▶ ▲ 클 ▶ 132/596

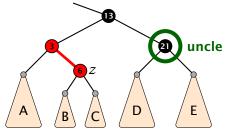
- 1. rotate around parent
- 2. move z downwards
- 3. you have case 2b.



7.2 Red Black Trees

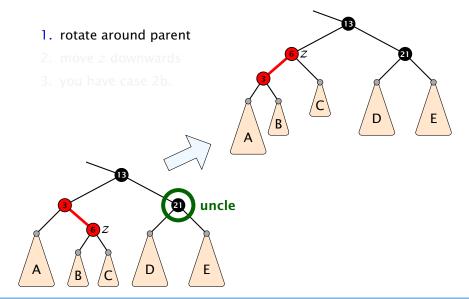
▲ □ ▶ ▲ 酉 ▶ ▲ 필 ▶ ▲ 필 ▶
 133/596

- 1. rotate around parent
- 2. move *z* downwards
- 3. you have case 2b.



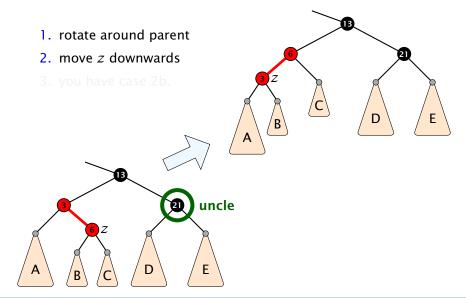
7.2 Red Black Trees

▲ □ ▶ ▲ 圖 ▶ ▲ 필 ▶ ▲ 필 ▶
 133/596



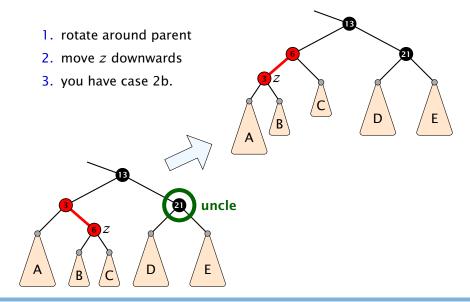
7.2 Red Black Trees

▲ □ ▶ ▲ 酉 ▶ ▲ 필 ▶ ▲ 필 ▶
 133/596



7.2 Red Black Trees

▲ □ ▶ ▲ 酉 ▶ ▲ 필 ▶ ▲ 필 ▶
 133/596



7.2 Red Black Trees

▲ □ ▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶
 133/596

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case $2a \rightarrow Case 2b \rightarrow red-black tree$
- Case 2b → red-black tree

Performing step one $O(\log n)$ times and every other step at most once, we get a red-black tree. Hence $O(\log n)$ re-colourings and at most 2 rotations.

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case $2a \rightarrow Case 2b \rightarrow red-black tree$
- Case $2b \rightarrow$ red-black tree

Performing step one $O(\log n)$ times and every other step at most once, we get a red-black tree. Hence $O(\log n)$ re-colourings and at most 2 rotations.

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case $2a \rightarrow Case 2b \rightarrow red-black$ tree
- Case 2b → red-black tree

Performing step one $O(\log n)$ times and every other step at most once, we get a red-black tree. Hence $O(\log n)$ re-colourings and at most 2 rotations.

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case $2a \rightarrow Case 2b \rightarrow red-black$ tree
- Case 2b → red-black tree

Performing step one $O(\log n)$ times and every other step at most once, we get a red-black tree. Hence $O(\log n)$ re-colourings and at most 2 rotations.

First do a standard delete.

If the spliced out node x was red everytting is fine.

If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- \sim If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

First do a standard delete.

If the spliced out node x was red everytting is fine.

If it was black there may be the following problems.

- Parent and child of powere red; two adjacent red vertices.
- \sim lf you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

First do a standard delete.

If the spliced out node x was red everytting is fine.

If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- ► If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

First do a standard delete.

If the spliced out node x was red everytting is fine.

If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

First do a standard delete.

If the spliced out node x was red everytting is fine.

If it was black there may be the following problems.

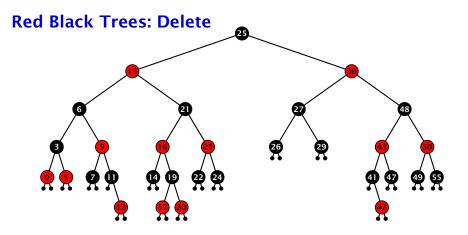
- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

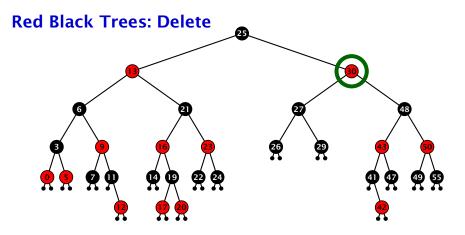
First do a standard delete.

If the spliced out node x was red everything is fine.

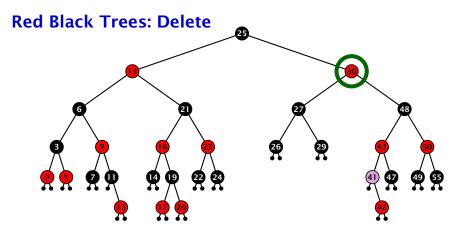
If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

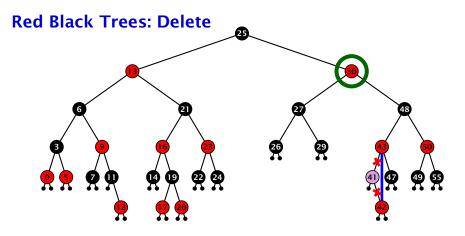




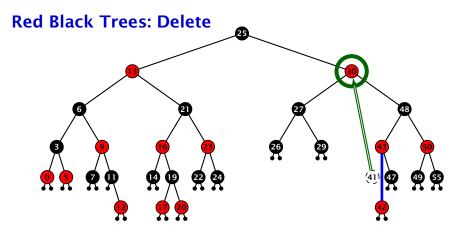
- do normal delete
- when replacing content by content of successor, don't change color of node



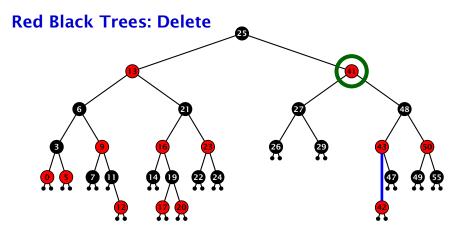
- do normal delete
- when replacing content by content of successor, don't change color of node



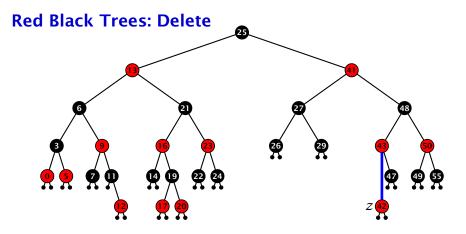
- do normal delete
- when replacing content by content of successor, don't change color of node



- do normal delete
- when replacing content by content of successor, don't change color of node

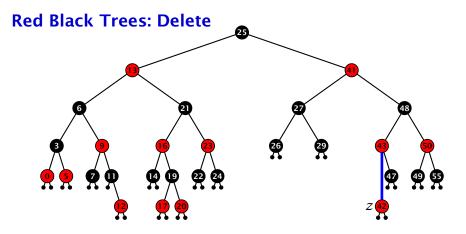


- do normal delete
- when replacing content by content of successor, don't change color of node



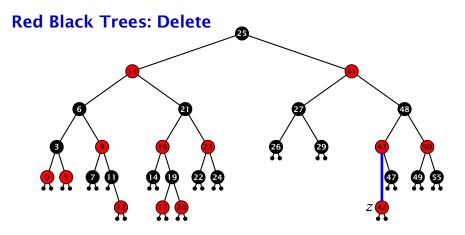
Delete:

- deleting black node messes up black-height property
- ▶ if *z* is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.



Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.



Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

Invariant of the fix-up algorihtm

the node z is black

if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

Invariant of the fix-up algorihtm

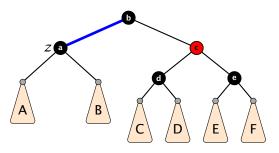
- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

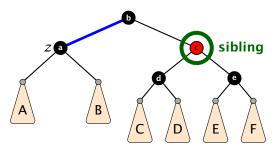
Invariant of the fix-up algorihtm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

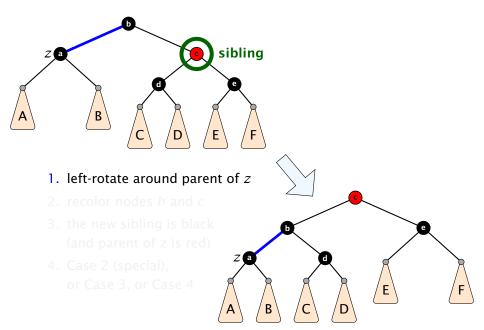
Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

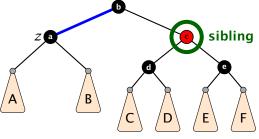


- 1. left-rotate around parent of z
- 2. recolor nodes b and c
- the new sibling is black (and parent of z is red)
- 4. Case 2 (special), or Case 3, or Case 4

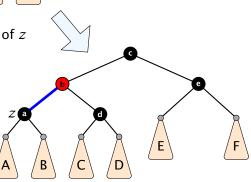


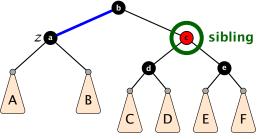
- 1. left-rotate around parent of z
- 2. recolor nodes *b* and *c*
- the new sibling is black (and parent of z is red)
- 4. Case 2 (special), or Case 3, or Case 4



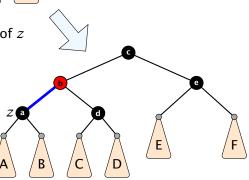


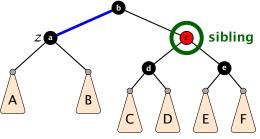
- 1. left-rotate around parent of z
- 2. recolor nodes *b* and *c*
- the new sibling is black (and parent of z is red)
- Case 2 (special), or Case 3, or Case 4



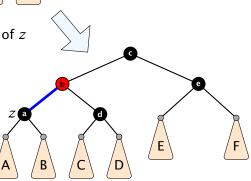


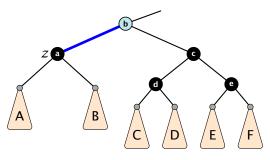
- 1. left-rotate around parent of z
- 2. recolor nodes *b* and *c*
- 3. the new sibling is black (and parent of z is red)
- 4. Case 2 (special), or Case 3, or Case 4



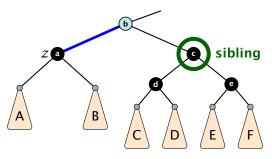


- 1. left-rotate around parent of z
- 2. recolor nodes *b* and *c*
- 3. the new sibling is black (and parent of z is red)
- 4. Case 2 (special), or Case 3, or Case 4

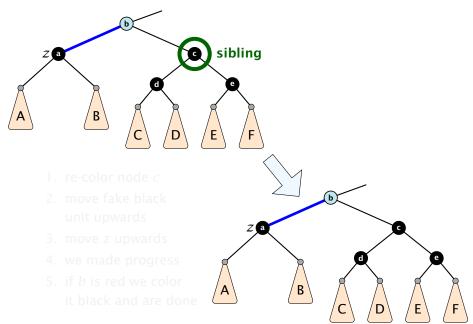


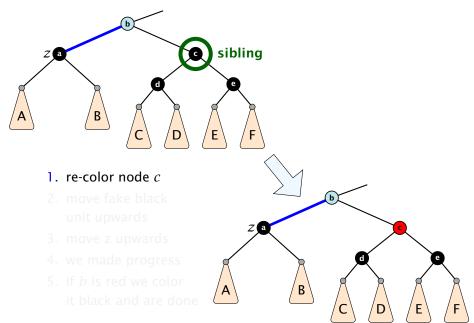


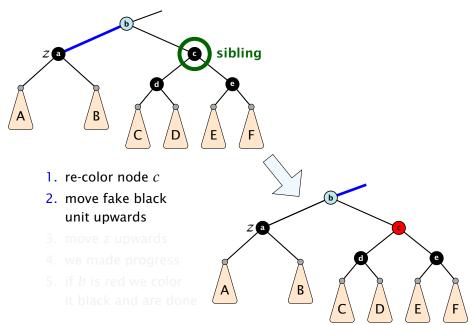
- 1. re-color node *c*
- 2. move fake black unit upwards
- 3. move z upwards
- 4. we made progress
- 5. if *b* is red we color it black and are done

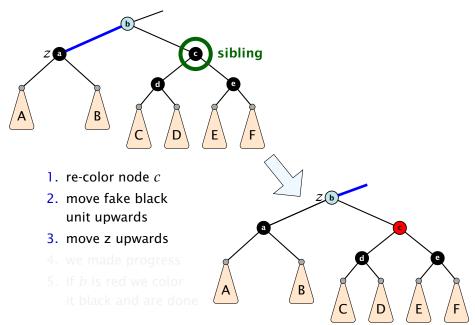


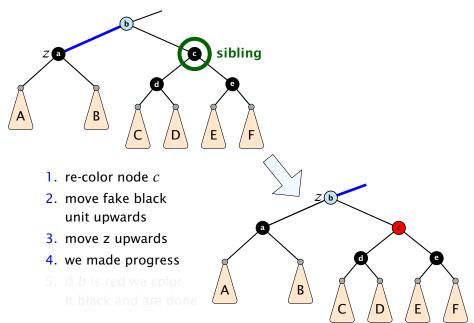
- 1. re-color node *c*
- 2. move fake black unit upwards
- 3. move z upwards
- 4. we made progress
- 5. if *b* is red we color it black and are done

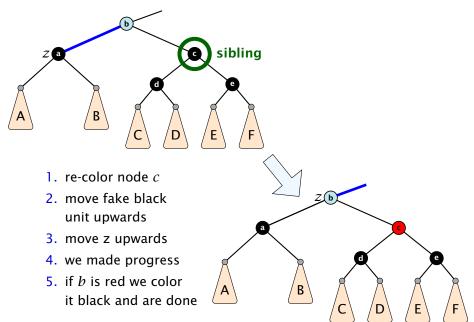






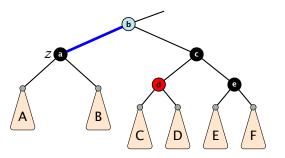






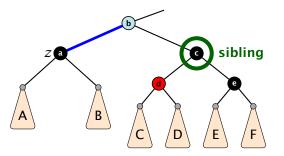
Case 3: Sibling black with one black child to the right

- 1. do a right-rotation at sibling
- 2. recolor *c* and *d*
- 3. new sibling is black with red right child (Case 4)

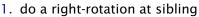


Case 3: Sibling black with one black child to the right

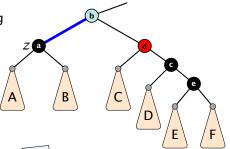
- 1. do a right-rotation at sibling
- 2. recolor *c* and *d*
- 3. new sibling is black with red right child (Case 4)

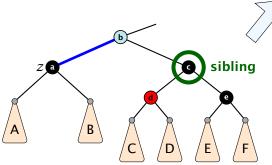


Case 3: Sibling black with one black child to the right



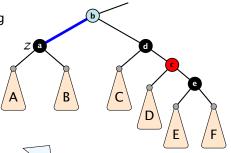
- 2. recolor *c* and *d*
- 3. new sibling is black with red right child (Case 4)

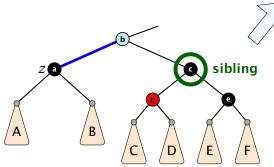




Case 3: Sibling black with one black child to the right

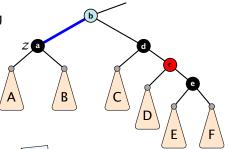
- 1. do a right-rotation at sibling
- **2.** recolor c and d
- new sibling is black with red right child (Case 4)

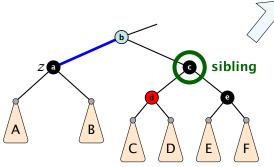


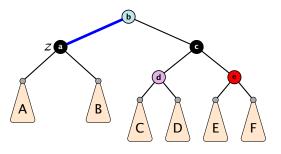


Case 3: Sibling black with one black child to the right

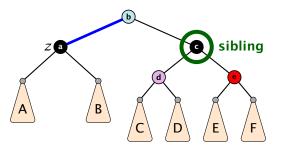
- 1. do a right-rotation at sibling
- **2.** recolor c and d
- 3. new sibling is black with red right child (Case 4)



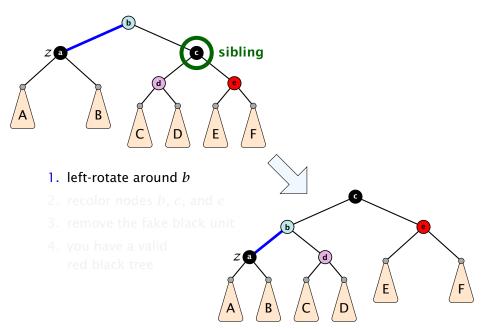


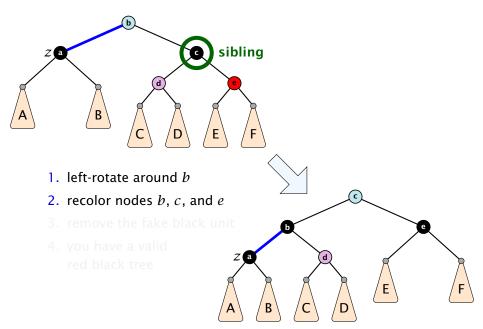


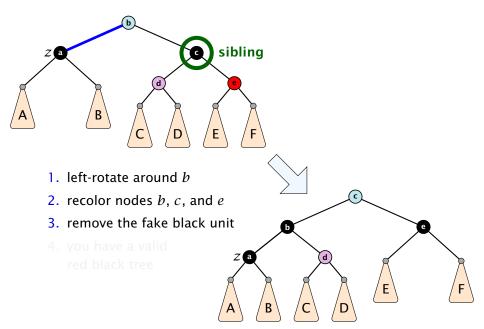
- 1. left-rotate around b
- 2. recolor nodes b, c, and e
- 3. remove the fake black unit
- you have a valid red black tree

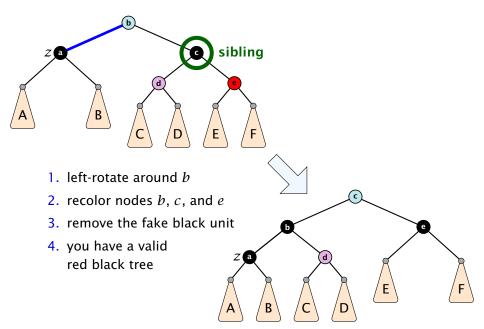


- 1. left-rotate around b
- 2. recolor nodes b, c, and e
- 3. remove the fake black unit
- you have a valid red black tree









 only Case 2 can repeat; but only h many steps, where h is the height of the tree

Case 1 → Case 2 (special) → red black tree
 Case 1 → Case 3 → Case 4 → red black tree
 Case 1 → Case 4 → red black tree

- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case 4 → red black tree

Performing Case 2 $O(\log n)$ times and every other step at most once, we get a red black tree. Hence, $O(\log n)$ re-colourings and at most 3 rotations.

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 \rightarrow Case 4 \rightarrow red black tree
- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case 4 → red black tree

Performing Case 2 $O(\log n)$ times and every other step at most once, we get a red black tree. Hence, $O(\log n)$ re-colourings and at most 3 rotations.

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 \rightarrow Case 4 \rightarrow red black tree
- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree

Case 4 → red black tree

Performing Case 2 $O(\log n)$ times and every other step at most once, we get a red black tree. Hence, $O(\log n)$ re-colourings and at most 3 rotations.

7.2 Red Black Trees

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 \rightarrow Case 4 \rightarrow red black tree
- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case 4 → red black tree

Performing Case 2 $O(\log n)$ times and every other step at most once, we get a red black tree. Hence, $O(\log n)$ re-colourings and at most 3 rotations.

7.2 Red Black Trees

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 \rightarrow Case 4 \rightarrow red black tree
- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case 4 → red black tree

Performing Case 2 $O(\log n)$ times and every other step at most once, we get a red black tree. Hence, $O(\log n)$ re-colourings and at most 3 rotations.

