Lemma 72

The number of non-saturating pushes performed is at most $O(n^2m)$.

Proof.

- Define a potential function $\Phi(f) = \sum_{\text{active nodes } v} \ell(v)$
- A saturating push increases Φ by at most 2n.
- A relabel increases Φ by at most 1.
- Hence,

#non-saturating_pushes \leq #relabels + $2n \cdot$ #saturating_pushes $\leq O(n^2m)$.

13.1 Ceneric Push Relabel	
15.1 Generie Publi Relaber	
	453
	13.1 Generic Push Relabel

13.2 Relabel to front

For special variants of push relabel algorithms we organize the neighbours of a node into a linked list (possible neighbours in the residual graph G_f). Then we use the discharge-operation:

1: while <i>u</i> is active do			
2:	$v \leftarrow u.current$ -neighbour		
3:	if $v = \text{null then}$		
4:	relabel(<i>u</i>)		
5:	u.current-neighbour ← u.neighbour-list-head		
6:	else		
7:	if (u, v) admissable then $push(u, v)$		
8:	else $u.current$ -neighbour $\leftarrow v.next$ -in-list		

Analysis

There is an implementation of the generic push relabel algorithm with running time $O(n^2m)$.

For every node maintain a list of admissable edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

- check whether edge (v, u) needs to be added to G_f
- check whether (u, v) needs to be deleted (saturating push)
- check whether u becomes inactive and has to be deleted from the set of active nodes

A relabel at a node u can be performed in time O(n)

- check for all outgoing edges if they become admissable
- check for all incoming edges if they become non-admissable

EADS 13.1 Generic Push Relabel

13.2 Relabel to front

Lemma 73

EADS

UIIII © Ernst Mayr, Harald Räcke

If v = null in line 3, then there is no outgoing admissable edge from u.

The lemma holds because push- and relabel-operations on nodes different from u cannot make edges outgoing from u admissable.

This shows that discharge(u) is correct, and that we can perform a relabel in line 4.

455

454

13.2 Relabel to front

1: in	itialize preflow			
2: initialize node list L containing $V \setminus \{s, t\}$ in any order				
3: foreach $u \in V \setminus \{s, t\}$ do				
4:	u.current-neighbour ← u.neighbour-list-head			
5: U	\leftarrow L.head			
6: while $u \neq \text{null } \mathbf{do}$				
7:	old-height $\leftarrow \ell(u)$			
8:	discharge(u)			
9:	if $\ell(u) > old$ -height then			
10:	move u to the front of L			
11:	$u \leftarrow u.next$			

50000	EADS © Ernst Mayr		
	(C) Ernst Mayr	Harald	Räcke

13.2 Relabel to front

457

Proof:

Initialization:

- 1. In the beginning *s* has label $n \ge 2$, and all other nodes have label 0. Hence, no edge is admissable, which means that any ordering *L* is permitted.
- 2. We start with *u* being the head of the list; hence no node before *u* can be active

Maintenance:

- Pushes do no create any new admissable edges. Therefore, not relabeling *u* leaves *L* topologically sorted.
 - After relabeling, u cannot have admissable incoming edges as such an edge (x, u) would have had a difference $\ell(x) \ell(u) \ge 2$ before the re-labeling (such edges do not exist in the residual graph).

Hence, moving u to the front does not violate the sorting property for any edge; however it fixes this property for all admissable edges leaving u that were generated by the relabeling.

13.2 Relabel to front

Lemma 74 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant holds.

- 1. The sequence L is topologically sorted w.r.t. the set of admissable edges; this means for an admissable edge (x, y) the node x appears before y in sequence L.
- 2. No node before u in the list L is active.

EADS © Ernst Mayr, Harald Räcke 13.2 Relabel to front

13.2 Relabel to front

Proof:

- Maintenance:
 - 2. If we do a relabel there is nothing to prove because the only node before u' (u in the next iteration) will be the current u; the discharge(u) operation only terminates when u is not active anymore.

For the case that we do a relabel, observe that the only way a predecessor could be active is that we push flow to it via an admissable arc. However, all admissable arc point to successors of u.

Note that the invariant for u = null means that we have a preflow with a valid labelling that does not have active nodes. This means we have a maximum flow.

13.2 Relabel to front

460

458

13.2 Relabel to front

Lemma 75

There are at most $\mathcal{O}(n^3)$ calls to discharge(u).

Every discharge operation without a relabel advances u (the current node within list L). Hence, if we have n discharge operations without a relabel we have u = null and the algorithm terminates.

Therefore, the number of calls to discharge is at most $n(\#relabels + 1) = O(n^3)$.

EADS C Ernst Mayr, Harald Räcke 13.2 Relabel to front

461

13.2 Relabel to front

Note that by definition a saturing push operation $(\min\{c_f(e), f(u)\} = c_f(e))$ can at the same time be a non-saturating push operation $(\min\{c_f(e), f(u)\} = f(u))$.

Lemma 77

The cost for all saturating push-operations that are **not** also non-saturating push-operations is only O(mn).

Note that such a push-operation leaves the node u active but makes the edge e disappear from the residual graph. Therefore the push-operation is immediately followed by an increase of the pointer u.current-neighbour.

This pointer can traverse the neighbour-list at most O(n) times (upper bound on number of relabels) and the neighbour-list has only degree(u) + 1 many entries (+1 for null-entry).

463

13.2 Relabel to front

Lemma 76

The cost for all relabel-operations is only $\mathcal{O}(n^2)$.

A relabel-operation at a node is constant time (increasing the label and resetting *u.current-neighbour*). In total we have $O(n^2)$ relabel-operations.

EADS © Ernst Mayr, Harald Räcke 13.2 Relabel to front

462

13.2 Relabel to front

Lemma 78

The cost for all non-saturating push-operations is only $\mathcal{O}(n^3)$.

A non-saturating push-operation takes constant time and ends the current call to discharge(). Hence, there are only $\mathcal{O}(n^3)$ such operations.

Theorem 79

The push-relabel algorithm with the rule relabel-to-front takes time $\mathcal{O}(n^3)$.