
Lemma 72
The number of non-saturating pushes performed is at most

O(n2m).

Proof.

ñ Define a potential function Φ(f ) =
∑

active nodesv `(v)
ñ A saturating push increases Φ by at most 2n.

ñ A relabel increases Φ by at most 1.

ñ A non-saturating push decreases Φ by at least 1 as the node

that is pushed from becomes inactive and has a label that is

strictly larger than the target.

ñ Hence,

#non-saturating_pushes ≤ #relabels+ 2n · #saturating_pushes

≤ O(n2m) .

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 453

Analysis

There is an implementation of the generic push relabel algorithm

with running time O(n2m).

For every node maintain a list of admissable edges starting at that

node. Further maintain a list of active nodes.

A push along an edge (u,v) can be performed in constant time

ñ check whether edge (v,u) needs to be added to Gf
ñ check whether (u,v) needs to be deleted (saturating push)

ñ check whether u becomes inactive and has to be deleted

from the set of active nodes

A relabel at a node u can be performed in time O(n)
ñ check for all outgoing edges if they become admissable

ñ check for all incoming edges if they become non-admissable

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 454

13.2 Relabel to front

For special variants of push relabel algorithms we organize the

neighbours of a node into a linked list (possible neighbours in the

residual graph Gf ). Then we use the discharge-operation:

Algorithm 48 discharge(u)
1: while u is active do

2: v ← u.current-neighbour

3: if v = null then

4: relabel(u)
5: u.current-neighbour ← u.neighbour-list-head

6: else

7: if (u,v) admissable then push(u,v)
8: else u.current-neighbour ← v.next-in-list

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 455

13.2 Relabel to front

Lemma 73
If v = null in line 3, then there is no outgoing admissable edge

from u.

The lemma holds because push- and relabel-operations on nodes

different from u cannot make edges outgoing from u admissable.

This shows that discharge(u) is correct, and that we can perform

a relabel in line 4.

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 456



13.2 Relabel to front

Algorithm 49 relabel-to-front(G, s, t)
1: initialize preflow

2: initialize node list L containing V \ {s, t} in any order

3: foreach u ∈ V \ {s, t} do

4: u.current-neighbour ← u.neighbour-list-head

5: u← L.head

6: while u ≠ null do

7: old-height ← `(u)
8: discharge(u)
9: if `(u) > old-height then

10: move u to the front of L
11: u← u.next

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 457

13.2 Relabel to front

Lemma 74 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant

holds.

1. The sequence L is topologically sorted w.r.t. the set of

admissable edges; this means for an admissable edge (x,y)
the node x appears before y in sequence L.

2. No node before u in the list L is active.

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 458

Proof:

ñ Initialization:

1. In the beginning s has label n ≥ 2, and all other nodes have
label 0. Hence, no edge is admissable, which means that any
ordering L is permitted.

2. We start with u being the head of the list; hence no node
before u can be active

ñ Maintenance:
1. ñ Pushes do no create any new admissable edges. Therefore,

not relabeling u leaves L topologically sorted.
ñ After relabeling, u cannot have admissable incoming edges

as such an edge (x,u) would have had a difference
`(x)− `(u) ≥ 2 before the re-labeling (such edges do not
exist in the residual graph).
Hence, moving u to the front does not violate the sorting
property for any edge; however it fixes this property for all
admissable edges leaving u that were generated by the
relabeling.

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 459

13.2 Relabel to front

Proof:

ñ Maintenance:

2. If we do a relabel there is nothing to prove because the only
node before u′ (u in the next iteration) will be the current u;
the discharge(u) operation only terminates when u is not
active anymore.

For the case that we do a relabel, observe that the only way a
predecessor could be active is that we push flow to it via an
admissable arc. However, all admissable arc point to
successors of u.

Note that the invariant for u = null means that we have a preflow

with a valid labelling that does not have active nodes. This means

we have a maximum flow.

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 460



13.2 Relabel to front

Lemma 75
There are at most O(n3) calls to discharge(u).

Every discharge operation without a relabel advances u (the

current node within list L). Hence, if we have n discharge

operations without a relabel we have u = null and the algorithm

terminates.

Therefore, the number of calls to discharge is at most

n(#relabels + 1) = O(n3).

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 461

13.2 Relabel to front

Lemma 76
The cost for all relabel-operations is only O(n2).

A relabel-operation at a node is constant time (increasing the

label and resetting u.current-neighbour). In total we have O(n2)
relabel-operations.

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 462

13.2 Relabel to front

Note that by definition a saturing push operation

(min{cf (e), f (u)} = cf (e)) can at the same time be a

non-saturating push operation (min{cf (e), f (u)} = f(u)).

Lemma 77
The cost for all saturating push-operations that are not also

non-saturating push-operations is only O(mn).

Note that such a push-operation leaves the node u active but

makes the edge e disappear from the residual graph. Therefore

the push-operation is immediately followed by an increase of the

pointer u.current-neighbour.

This pointer can traverse the neighbour-list at most O(n) times

(upper bound on number of relabels) and the neighbour-list has

only degree(u)+ 1 many entries (+1 for null-entry).

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 463

13.2 Relabel to front

Lemma 78
The cost for all non-saturating push-operations is only O(n3).

A non-saturating push-operation takes constant time and ends the

current call to discharge(). Hence, there are only O(n3) such

operations.

Theorem 79
The push-relabel algorithm with the rule relabel-to-front takes

time O(n3).

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 464


