Lemma 72
The number of non-saturating pushes performed is at most $\mathcal{O}\left(n^{2} m\right)$.

Proof.

- Define a potential function $\Phi(f)=\sum_{\text {active nodes } v} \ell(v)$
- A saturating push increases Φ by at most $2 n$.
- A relabel increases Φ by at most 1 .
- A non-saturating push decreases Φ by at least 1 as the node that is pushed from becomes inactive and has a label that is strictly larger than the target.
- Hence,
\#non-saturating_pushes \leq \#relabels $+2 n \cdot \#$ saturating_pushes

$$
\leq \mathcal{O}\left(n^{2} m\right)
$$

13.2 Relabel to front

For special variants of push relabel algorithms we organize the neighbours of a node into a linked list (possible neighbours in the residual graph G_{f}). Then we use the discharge-operation:

```
Algorithm 48 discharge(u)
    while }u\mathrm{ is active do
        v \leftarrow u . c u r r e n t - n e i g h b o u r ~
        if}v=\mathrm{ null then
            relabel(u)
            u.current-neighbour }\leftarrowu.neighbour-list-head
        else
            if (u,v) admissable then push(u,v)
            else u.current-neighbour }\leftarrowv.next-in-lis
```


Analysis

There is an implementation of the generic push relabel algorithm with running time $\mathcal{O}\left(n^{2} m\right)$.

For every node maintain a list of admissable edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

- check whether edge (v, u) needs to be added to G_{f}
- check whether (u, v) needs to be deleted (saturating push)
- check whether u becomes inactive and has to be deleted from the set of active nodes

A relabel at a node u can be performed in time $\mathcal{O}(n)$

- check for all outgoing edges if they become admissable
- check for all incoming edges if they become non-admissable

13.2 Relabel to front

Lemma 73

If $v=$ null in line 3, then there is no outgoing admissable edge from u.
The lemma holds because push- and relabel-operations on nodes different from u cannot make edges outgoing from u admissable.

This shows that discharge (u) is correct, and that we can perform a relabel in line 4.

13.2 Relabel to front

```
Algorithm 49 relabel-to-front \((G, s, t)\)
    initialize preflow
    initialize node list \(L\) containing \(V \backslash\{s, t\}\) in any order
    foreach \(u \in V \backslash\{s, t\}\) do
            u.current-neighbour \(\leftarrow\) u.neighbour-list-head
    \(u \leftarrow\) L.head
    while \(u \neq\) null do
        old-height \(\leftarrow \ell(u)\)
        discharge ( \(u\) )
        if \(\ell(u)>\) old-height then
            move \(u\) to the front of \(L\)
            \(u \leftarrow u\).next
```


Proof:

- Initialization:

1. In the beginning s has label $n \geq 2$, and all other nodes have label 0 . Hence, no edge is admissable, which means that any ordering L is permitted.
2. We start with u being the head of the list; hence no node before u can be active

- Maintenance:

1. Pushes do no create any new admissable edges. Therefore, not relabeling u leaves L topologically sorted.

- After relabeling, u cannot have admissable incoming edges as such an edge (x, u) would have had a difference $\ell(x)-\ell(u) \geq 2$ before the re-labeling (such edges do not exist in the residual graph).
Hence, moving u to the front does not violate the sorting property for any edge; however it fixes this property for all admissable edges leaving u that were generated by the relabeling.

13.2 Relabel to front

Lemma 74 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant holds.

1. The sequence L is topologically sorted w.r.t. the set of admissable edges; this means for an admissable edge (x, y) the node x appears before y in sequence L.
2. No node before u in the list L is active.
13.2 Relabel to front

13.2 Relabel to front

Proof:

- Maintenance:

2. If we do a relabel there is nothing to prove because the only node before u^{\prime} (u in the next iteration) will be the current u; the discharge (u) operation only terminates when u is not active anymore.

For the case that we do a relabel, observe that the only way a predecessor could be active is that we push flow to it via an admissable arc. However, all admissable arc point to successors of u.

Note that the invariant for $u=$ null means that we have a preflow with a valid labelling that does not have active nodes. This means we have a maximum flow.

EADS		
Ernst Mayr, Harald Räcke	13.2 Relabel to front	460

13.2 Relabel to front

Lemma 75

There are at most $\mathcal{O}\left(n^{3}\right)$ calls to discharge(u).

Every discharge operation without a relabel advances u (the current node within list L). Hence, if we have n discharge operations without a relabel we have $u=$ null and the algorithm terminates.

Therefore, the number of calls to discharge is at most $n(\#$ relabels +1$)=\mathcal{O}\left(n^{3}\right)$.

13.2 Relabel to front

Note that by definition a saturing push operation $\left(\min \left\{c_{f}(e), f(u)\right\}=c_{f}(e)\right)$ can at the same time be a non-saturating push operation $\left(\min \left\{c_{f}(e), f(u)\right\}=f(u)\right)$.

Lemma 77
The cost for all saturating push-operations that are not also non-saturating push-operations is only $\mathcal{O}(\mathrm{mn})$.

Note that such a push-operation leaves the node u active but makes the edge e disappear from the residual graph. Therefore the push-operation is immediately followed by an increase of the pointer u.current-neighbour.
This pointer can traverse the neighbour-list at most $\mathcal{O}(n)$ times (upper bound on number of relabels) and the neighbour-list has only degree (u) + 1 many entries (+1 for null-entry).

13.2 Relabel to front

Lemma 76

The cost for all relabel-operations is only $\mathcal{O}\left(n^{2}\right)$.

A relabel-operation at a node is constant time (increasing the label and resetting u.current-neighbour). In total we have $\mathcal{O}\left(n^{2}\right)$ relabel-operations.
©

13.2 Relabel to front

Lemma 78

The cost for all non-saturating push-operations is only $\mathcal{O}\left(n^{3}\right)$.

A non-saturating push-operation takes constant time and ends the current call to discharge(). Hence, there are only $\mathcal{O}\left(n^{3}\right)$ such operations.

Theorem 79
The push-relabel algorithm with the rule relabel-to-front takes time $\mathcal{O}\left(n^{3}\right)$.

