For special variants of push relabel algorithms we organize the neighbours of a node into a linked list (possible neighbours in the residual graph G_f). Then we use the discharge-operation:

```
Algorithm 48 discharge(u)
 1: while u is active do
        v \leftarrow u.current-neighbour
2:
        if v = \text{null then}
3:
              relabel(u)
4:
              u.current-neighbour ← u.neighbour-list-head
5:
         else
6.
              if (u, v) admissable then push(u, v)
7:
              else u.current-neighbour \leftarrow v.next-in-list
 8:
```


Lemma 73

If v = null in line 3, then there is no outgoing admissable edge from u.

The lemma holds because push- and relabel-operations on nodes different from \boldsymbol{u} cannot make edges outgoing from \boldsymbol{u} admissable.

This shows that discharge(u) is correct, and that we can perform a relabel in line 4.

Algorithm 49 relabel-to-front(G, s, t)

- 1: initialize preflow
- 2: initialize node list L containing $V \setminus \{s, t\}$ in any order
- 3: **foreach** $u \in V \setminus \{s, t\}$ **do**
- 4: $u.current-neighbour \leftarrow u.neighbour-list-head$
- 5: *u* ← *L*.head
- 6: while $u \neq \text{null do}$
- 7: $old\text{-}height \leftarrow \ell(u)$
- 8: discharge(u)
- 9: **if** $\ell(u) > old\text{-}height$ **then**
- 10: move u to the front of L
- 11: $u \leftarrow u.next$

Lemma 74 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant holds.

- 1. The sequence L is topologically sorted w.r.t. the set of admissable edges; this means for an admissable edge (x,y) the node x appears before y in sequence L.
- **2**. No node before u in the list L is active.

Proof:

Initialization:

- 1. In the beginning s has label $n \ge 2$, and all other nodes have label 0. Hence, no edge is admissable, which means that any ordering L is permitted.
- 2. We start with u being the head of the list; hence no node before u can be active

Maintenance:

- Pushes do no create any new admissable edges. Therefore, not relabeling u leaves L topologically sorted.
 - After relabeling, u cannot have admissable incoming edges as such an edge (x, u) would have had a difference $\ell(x) \ell(u) \ge 2$ before the re-labeling (such edges do not exist in the residual graph).

Hence, moving u to the front does not violate the sorting property for any edge; however it fixes this property for all admissable edges leaving u that were generated by the relabeling.

Proof:

- Maintenance:
 - 2. If we do a relabel there is nothing to prove because the only node before u' (u in the next iteration) will be the current u; the discharge(u) operation only terminates when u is not active anymore.

For the case that we do a relabel, observe that the only way a predecessor could be active is that we push flow to it via an admissable arc. However, all admissable arc point to successors of u.

Note that the invariant for u = null means that we have a preflow with a valid labelling that does not have active nodes. This means we have a maximum flow.

Lemma 75

There are at most $O(n^3)$ calls to discharge(u).

Every discharge operation without a relabel advances u (the current node within list L). Hence, if we have n discharge operations without a relabel we have u = null and the algorithm terminates.

Therefore, the number of calls to discharge is at most $n(\#relabels + 1) = O(n^3)$.

Lemma 76

The cost for all relabel-operations is only $O(n^2)$.

A relabel-operation at a node is constant time (increasing the label and resetting u.current-neighbour). In total we have $\mathcal{O}(n^2)$ relabel-operations.

Note that by definition a saturing push operation $(\min\{c_f(e),f(u)\}=c_f(e))$ can at the same time be a non-saturating push operation $(\min\{c_f(e),f(u)\}=f(u))$.

Lemma 77

The cost for all saturating push-operations that are **not** also non-saturating push-operations is only O(mn).

Note that such a push-operation leaves the node u active but makes the edge e disappear from the residual graph. Therefore the push-operation is immediately followed by an increase of the pointer u.current-neighbour.

This pointer can traverse the neighbour-list at most $\mathcal{O}(n)$ times (upper bound on number of relabels) and the neighbour-list has only degree(u) + 1 many entries (+1 for null-entry).

Lemma 78

The cost for all non-saturating push-operations is only $O(n^3)$.

A non-saturating push-operation takes constant time and ends the current call to discharge(). Hence, there are only $\mathcal{O}(n^3)$ such operations.

Theorem 79

The push-relabel algorithm with the rule relabel-to-front takes time $\mathcal{O}(n^3)$.

