6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_0, c_k \neq 0$).

- T(n) only depends on the k preceding values. This means the recurrence relation is of order k.
- The recurrence is linear as there are no products of T[n]'s.
- ► If f(n) = 0 then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

EADS	6.3 The Characteristic Polynomial	
🛛 🛄 🔲 🕻 C Ernst Mayr, Harald Räcke		57

The Homogenous Case

The solution space

 $S = \{T = T[0], T[1], T[2], \dots \mid T \text{ fulfills recurrence relation} \}$

is a vector space. This means that if $T_1, T_2 \in S$, then also $\alpha T_1 + \beta T_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \cdots + c_k \cdot \lambda^{n-k} = 0$$

for all $n \ge k$.

```
EADS 6.3 The C
© Ernst Mayr, Harald Räcke
```

59

6.3 The Characteristic Polynomial

Observations:

- ► The solution T[0], T[1], T[2],... is completely determined by a set of boundary conditions that specify values for T[0],...,T[k-1].
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

EADS © Ernst Mayr, Harald Räcke	6.3 The Characteristic Polynomial	
🛛 💾 🗋 🕻 🕲 Ernst Mayr, Harald Räcke		58

The Homogenous Case

Dividing by λ^{n-k} gives that all these constraints are identical to

$$\underbrace{c_0\lambda^k + c_1\lambda^{k-1} + c_2 \cdot \lambda^{k-2} + \dots + c_k}_{\text{characteristic polynomial } P[\lambda]} = 0$$

This means that if λ_i is a root (Nullstelle) of $P[\lambda]$ then $T[n] = \lambda_i^n$ is a solution to the recurrence relation.

Let $\lambda_1, \ldots, \lambda_k$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$

is a solution for arbitrary values α_i .

The Homogenous Case

Lemma 5

Assume that the characteristic polynomial has k distinct roots $\lambda_1, \ldots, \lambda_k$. Then all solutions to the recurrence relation are of the form

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$
.

Proof.

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

We show that the above set of solutions contains one solution for every choice of boundary conditions.

	6.3 The Characteristic Polynomial	
EADS © Ernst Mayr, Harald Räcke		61

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

$$\begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_k^2 \\ & \vdots & & \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_k^k \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{pmatrix} = \begin{pmatrix} T[1] \\ T[2] \\ \vdots \\ T[k] \end{pmatrix}$$

We show that the column vectors are linearly independent. Then the above equation has a solution.

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

$$\alpha_{1} \cdot \lambda_{1} + \alpha_{2} \cdot \lambda_{2} + \cdots + \alpha_{k} \cdot \lambda_{k} = T[1]$$

$$\alpha_{1} \cdot \lambda_{1}^{2} + \alpha_{2} \cdot \lambda_{2}^{2} + \cdots + \alpha_{k} \cdot \lambda_{k}^{2} = T[2]$$

$$\vdots$$

$$\alpha_{1} \cdot \lambda_{1}^{k} + \alpha_{2} \cdot \lambda_{2}^{k} + \cdots + \alpha_{k} \cdot \lambda_{k}^{k} = T[k]$$
6.3 The Characteristic Polynomial
$$6.3 \text{ The Characteristic Polynomial}$$

The Homogenous Case

Proof (cont.).

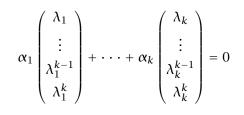
EADS

This we show by induction:

base case (k = 1):

A vector (λ_i) , $\lambda_i \neq 0$ is linearly independent.

• induction step $(k \rightarrow k + 1)$: assume for contradiction that there exist α_i 's with



and not all $\alpha_i = 0$. Then all $\alpha_i \neq 0$!

6.3 The Characteristic Polynomial

63

62



The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$.

To see this consider the polynomial

$$P(\lambda)\lambda^{n-k} = c_0\lambda^n + c_1\lambda^{n-1} + c_2\lambda^{n-2} + \dots + c_k\lambda^{n-k}$$

Since λ_i is a root we can write this as $Q(\lambda)(\lambda - \lambda_i)^2$. Calculating the derivative gives a polynomial that still has root λ_i .

This means

$$c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \cdots + c_k (n-k) \lambda_i^{n-k-1} = 0$$

Hence,

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

$$T[n] \qquad T[n-1] \qquad T[n-k]$$

The Homogeneous Case

This gives that

$$\sum_{i=1}^{k-1} (1 - \frac{\lambda_i}{\lambda_k}) \alpha_i v_i = 0 .$$

This is a contradiction as the v_i 's are linearly independent because of induction hypothesis.

EADS © Ernst Mayr, Harald Räcke	6.3 The Characteristic Polynomial	66

The Homogeneous Case

Suppose λ_i has multiplicity *j*. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

$$c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \dots + c_k (n-k)^2 \lambda_i^{n-k} = 0$$

We can continue j - 1 times.

Hence, $n^{\ell}\lambda_i^n$ is a solution for $\ell \in 0, \ldots, j-1$.

EADS 6.3

67

The Homogeneous Case

Lemma 6

Let $P[\lambda]$ denote the characteristic polynomial to the recurrence

$$c_0T[n] + c_1T[n-1] + \cdots + c_kT[n-k] = 0$$

Let λ_i , i = 1, ..., m be the (complex) roots of $P[\lambda]$ with multiplicities ℓ_i . Then the general solution to the recurrence is given by

$$T[n] = \sum_{i=1}^{m} \sum_{j=0}^{\ell_i - 1} \alpha_{ij} \cdot (n^j \lambda_i^n) .$$

The full proof is omitted. We have only shown that any choice of α_{ii} 's is a solution to the recurrence.

EADS © Ernst Mayr, Harald Räcke	6.3 The Characteristic Polynomial	
🛛 🕒 🛛 🖉 © Ernst Mayr, Harald Räcke		69

Example: Fibonacci Sequence

Hence, the solution is of the form

$$\alpha\left(\frac{1+\sqrt{5}}{2}\right)^n + \beta\left(\frac{1-\sqrt{5}}{2}\right)$$

п

T[0] = 0 gives $\alpha + \beta = 0$.

T[1] = 1 gives

$$\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1 \Longrightarrow \alpha-\beta=\frac{2}{\sqrt{5}}$$

EADS 6.3 The Characteristic Polynomial © Ernst Mayr, Harald Räcke

71

Example: Fibonacci Sequence

T[0] = 0 T[1] = 1 $T[n] = T[n-1] + T[n-2] \text{ for } n \ge 2$

The characteristic polynomial is

 $\lambda^2 - \lambda - 1$

Finding the roots, gives

$$\lambda_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \left(1 \pm \sqrt{5} \right)$$

70

EADS © Ernst Mayr, Harald Räcke	6.3 The Characteristic Polynomial
🛛 💾 🗋 🗋 🛈 Ernst Mayr, Harald Räcke	

Example: Fibonacci Sequence Hence, the solution is $\frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]$ $\frac{1}{\sqrt{5}} \left[\left(\frac{3}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]$

The Inhomogeneous Case

Consider the recurrence relation:

 $c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$

with $f(n) \neq 0$.

While we have a fairly general technique for solving homogeneous, linear recurrence relations the inhomogeneous case is different.

EADS	6.3 The Characteristic Polynomial	
🛛 🕒 🔲 🕜 Ernst Mayr, Harald Räcke		73
CENIST MAYI, HAIAIU KACKE		75

The Inhomogeneous Case

Example:

T[n] = T[n-1] + 1 T[0] = 1

Then,

T[n-1] = T[n-2] + 1 $(n \ge 2)$

Subtracting the first from the second equation gives,

 $T[n] - T[n-1] = T[n-1] - T[n-2] \qquad (n \ge 2)$

or

 $T[n] = 2T[n-1] - T[n-2] \qquad (n \ge 2)$

I get a completely determined recurrence if I add T[0] = 1 and T[1] = 2.

The Inhomogeneous Case

The general solution of the recurrence relation is

$$T(n) = T_h(n) + T_p(n) ,$$

where T_h is any solution to the homogeneous equation, and T_p is one particular solution to the inhomogeneous equation.

74

There is no general method to find a particular solution.

EADS © Ernst Mayr, Harald Räcke	6.3 The Characteristic Polynomial
🛛 🛄 🗍 🗋 🕞 Ernst Mayr, Harald Räcke	

The Inhomogeneous Case	
Example: Characteristic polynomial:	
$\underbrace{\frac{\lambda^2 - 2\lambda + 1}{(\lambda - 1)^2}} = 0$	
Then the solution is of the form	
$T[n] = \alpha 1^n + \beta n 1^n = \alpha + \beta n$	
$T[0] = 1$ gives $\alpha = 1$.	
$T[1] = 2$ gives $1 + \beta = 2 \Longrightarrow \beta = 1$.	
EADS 6.3 The Characteristic Polynomial © Ernst Mayr, Harald Räcke	76

EADS 6.3 The Charact

The Inhomogeneous Case

If f(n) is a polynomial of degree r this method can be applied r + 1 times to obtain a homogeneous equation:

 $T[n] = T[n-1] + n^2$

Shift:

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

Difference:

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

50 00 EADS	6.3 The Characteristic Polynomial	
EADS © Ernst Mayr, Harald Räcke		77
🛛 🕒 🛛 🖉 🕲 Ernst Mayr, Harald Räcke		77

6.4 Generating Functions

Definition 7 (Generating Function)

Let $(a_n)_{n\geq 0}$ be a sequence. The corresponding

generating function (Erzeugendenfunktion) is

$$F(z) := \sum_{n=0}^{\infty} a_n z^n;$$

 exponential generating function (exponentielle Erzeugendenfunktion) is

$$F(z) = \sum_{n \ge 0} \frac{a_n}{n!} z^n.$$

T[n] = 2T[n-1] - T[n-2] + 2n - 1

Shift:

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$
$$= 2T[n-2] - T[n-3] + 2n - 3$$

Difference:

$$T[n] - T[n-1] = 2T[n-1] - T[n-2] + 2n - 1$$
$$- 2T[n-2] + T[n-3] - 2n + 3$$

$$T[n] = 3T[n-1] - 3T[n-2] + T[n-3] + 2$$

and so on...

הח] EADS	6.3 The Characteristic Polynomial	
EADS © Ernst Mayr, Harald Räcke		78

6.4 Generating Functions

Example 8

EADS © Ernst Mayr, Harald Räcke

1. The generating function of the sequence (1, 0, 0, ...) is

F(z)=1.

2. The generating function of the sequence (1, 1, 1, ...) is

$$F(z) = \frac{1}{1-z}.$$

79