## 3.2 PSPACE and strategies for game playing

- 4.  $\mathcal{NL}$ -completeness
- 4.1 Certificate definition of  $\mathcal{NL}$ : Read-once certificates
- 4.2  $\mathcal{NL} = \mathbf{co}\mathcal{NL}$

## See



Sanjeev Arora, Boaz Barak:

Computational Complexity — A Modern Approach,

p. 83-88, Cambridge University Press: Cambridge-New York-Melbourne, 2009



## Further references:



Larry J. Stockmeyer, Albert R. Meyer:

Word problems requiring exponential time,

Proceedings of the 5th Symposium on Theory of Computing, p. 1–9 (1973) This paper contains some important PSPACE-completeness results.



Albert R. Meyer, Larry J. Stockmeyer:

The equivalence problem for regular expressions with squaring requires exponential space,

Proceedings of the 13th Annual Symposium on Switching and Automata Theory, p. 125–129 (1972)

This paper contains an EXPSPACE-completeness result.

And here an  $\mathcal{NL}$ -machine based proof for  $\mathcal{NL} = co\mathcal{NL}$ :



Holenstein, Thomas

Complexity Theory,

p. 13-14, Script, ETH Zürich, 2010



