WS 2013/14

Efficient Algorithms and Data Structures

Harald Räcke

Fakultät für Informatik TU München

http://www14.in.tum.de/lehre/2013WS/ea/

Winter Term 2013/14

1

EADS © Ernst Mayr, Harald Räcke

Part I

Organizational Matters

- Modul: IN2003
- Name: "Efficient Algorithms and Data Structures"
 "Effiziente Algorithmen und Datenstrukturen"
- ECTS: 8 Credit points
- Lectures:
 - 4 SWS Mon 10:15-11:45 (Room Interim2) Fri 10:15-11:45 (Room Interim2)
- Webpage: http://www14.in.tum.de/lehre/2013WS/ea/

Part I	
Organizational Matters	
EADS © Ernst Mayr, Harald Räcke	2

Required knowledge: IN0001, IN0003 "Introduction to Informatics 1/2" "Einführung in die Informatik 1/2" IN0007 "Fundamentals of Algorithms and Data Structures" "Grundlagen: Algorithmen und Datenstrukturen" (GAD) ▶ IN0011 "Basic Theoretic Informatics" "Einführung in die Theoretische Informatik" (THEO) ▶ IN0015 "Discrete Structures" "Diskrete Strukturen" (DS) ► IN0018 "Discrete Probability Theory" "Diskrete Wahrscheinlichkeitstheorie" (DWT)

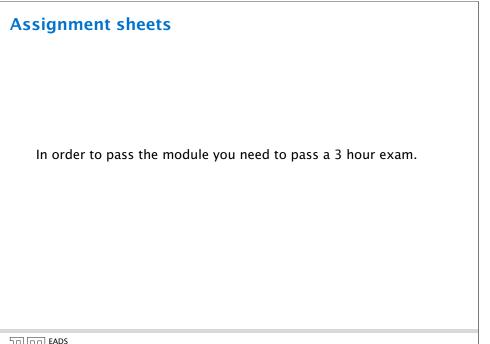
- Tuesday 14-16 (MI 00.08.038) Richard
- Thursday 10-12 (MI 00.08.038) Richard
- Friday 12-14 (MI 00.13.009A) Chintan

Tutorials

Tutors:

- Chintan Shah
- chintan.shah@tum.de
- ▶ Room: 03.09.059
- Office hours: Wed 11:30-12:30
- Richard Stotz
- richardstotz@gmail.com
- Room: —
- Office hours: —

EADS © Ernst Mayr, Harald Räcke



Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English.
- Solutions will be discussed in the tutorial of the week when the sheet has been handed in, i.e. sheet may not be corrected by this time.
- You can submit solutions in groups of up to **3** people.

1 Contents

- Foundations
 - Machine models
 - Efficiency measures
 - Asymptotic notation
 - Recursion
- Higher Data Structures
 - Search trees
 - Hashing
 - Priority queues
 - Union/Find data structures
- Cuts/Flows
- Matchings

Assessment

Assignment can be used to improve you grade

If you obtain 50% of the points on the first half and 50% on the second half of assignments your grade will improve according to the following function

$$f(x) = \begin{cases} \frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3x)-1}{3}\right)\right) & 1 < x < 4\\ x & \text{otw.} \end{cases}$$

- It will improve by 0.3 or 0.4, respectively. Examples:
 - ▶ $3.3 \rightarrow 3.0$
 - ▶ $2.0 \rightarrow 1.7$
 - ▶ $3.7 \rightarrow 3.3$
 - ▶ $1.0 \rightarrow 1.0$
 - > 3.0 no improvement

EADS ©Ernst Mayr, Harald Räcke

2 Literatur Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman: The design and analysis of computer algorithms, Addison-Wesley Publishing Company: Reading (MA), 1974 Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to algorithms, McGraw-Hill, 1990 Michael T. Goodrich. Roberto Tamassia: Algorithm design: Foundations, analysis, and internet examples, John Wiley & Sons, 2002 nn EADS 2 Literatur ©Ernst Mayr, Harald Räcke

11

۵

2 Literatur

EADS © Ernst Mayr, Harald Räcke

 Volker Heun: Grundlegende Algorithmen: Einführung in den Entwurf u die Analyse effizienter Algorithmen, Auflage, Vieweg, 2003 	ınd
Jon Kleinberg, Eva Tardos: <i>Algorithm Design</i> , Addison-Wesley, 2005	
 Donald E. Knuth: <i>The art of computer programming. Vol. 1: Fundamental</i> <i>Algorithms</i>, 3. Auflage, Addison-Wesley Publishing Company: Readin (MA), 1997 	

2 Literatur

	Part II	
	Foundations	
EADS © Ernst Mayr, Har	ald Räcke	

2 Literatur

13

15

Donald E. Knuth: <i>The art of computer programming. Vol. 3: Sorting and</i> <i>Searching</i> , 3. Auflage, Addison-Wesley Publishing Company: Reading (MA), 1997
Christos H. Papadimitriou, Kenneth Steiglitz: <i>Combinatorial Optimization: Algorithms and Complexity</i> , Prentice Hall, 1982
Uwe Schöning: <i>Algorithmik</i> , Spektrum Akademischer Verlag, 2001
Steven S. Skiena: <i>The Algorithm Design Manual</i> , Springer, 1998
 ADS 2 Literatur Ernst Mayr, Harald Räcke

Vocabularies		
a · b	"a times b" "a multiplied by b" "a into b"	
$\frac{a}{b}$	"a divided by b" "a by b" "a over b"	
h	(<i>a</i> : numerator (Zähler), <i>b</i> : denominator (Nenner))	
a	"a raised to the b-th power" "a to the b-th" "a raised to the power of b"	
	" <i>a</i> to the power of <i>b</i> " " <i>a</i> raised to <i>b</i> " " <i>a</i> to the <i>b</i> "	
	" <i>a</i> to the <i>b</i> " " <i>a</i> raised by the exponent of <i>b</i> "	

EADS © Ernst Mayr, Harald Räcke

Vocabularies

n! "n factorial"

- $\binom{n}{k}$ "*n* choose k"
- x_i "x subscript i" "x sub i" "x i"
- $\log_b a$ "log to the base *b* of *a*" "log *a* to the base *b*"

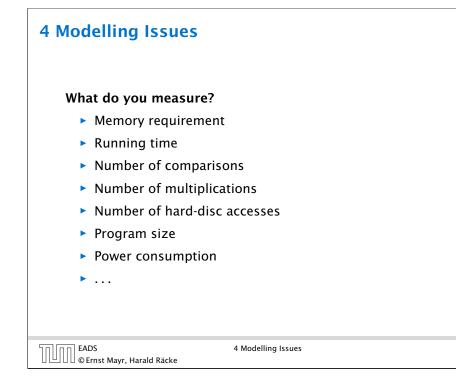
 $f: X \to Y, x \mapsto x^2$

f is a function that maps from domain (Definitionsbereich) X to codomain (Zielmenge) Y. The set $\{y \in Y \mid \exists x \in X : f(x) = y\}$ is the image or the range of the function (Bildbereich/Wertebereich).

EADS © Ernst Mayr, Harald Räcke

17

19



3 Goals

- Gain knowledge about efficient algorithms for important problems, i.e., learn how to solve certain types of problems efficiently.
- Learn how to analyze and judge the efficiency of algorithms.
- Learn how to design efficient algorithms.

רח הח EADS	3 Goals	
UUU © Ernst Mayr, Harald Räcke		18

4 Modelling Issues

How do you measure?

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time $\mathcal{O}(n^2)$ ".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least Ω(n log n) comparisons in the worst case".

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function $f : \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

Example 1

Suppose *n* numbers from the interval $\{1, ..., N\}$ have to be sorted. In this case we usually say that the input length is *n* instead of e.g. $n \log N$, which would be the number of bits required to encode the input.

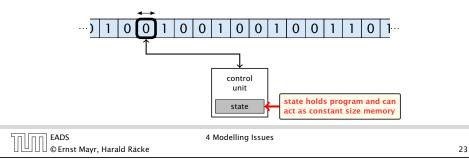
החוחר	EADS © Ernst Mayr, Harald Räcke	4 Mo
	© Ernst Mayr, Harald Räcke	

4	Modelling	Issues

21

Turing Machine

- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computabiliy, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form xx, where x is a string, have quadratic lower bound.
- \Rightarrow Not a good model for developing efficient algorithms.



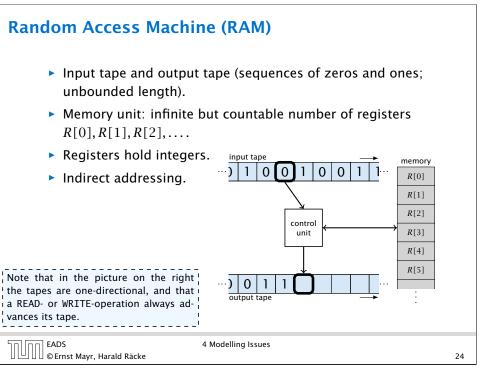
Model of Computation

How to measure performance

- Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), ...
- 2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

EADS © Ernst Mayr, Harald Räcke 4 Modelling Issues



Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
 - ► READ *i*
- output operations $(R[i] \rightarrow \text{output tape})$
 - WRITE i
- register-register transfers
 - $\blacktriangleright R[j] := R[i]$
 - ▶ R[j] := 4
- indirect addressing
 - R[j] := R[R[i]] loads the content of the R[i]-th register into the j-th register
 - R[R[i]] := R[j]

loads the content of the j-th into the R[i]-th register

EADS © Ernst Mayr, Harald Räcke	4 Modelling Issues
🛛 🕒 🛛 🖉 © Ernst Mayr, Harald Räcke	

Model of Computation

- uniform cost model
 Every operation takes time 1.
- logarithmic cost model
 The sect demonder on the sector of a sector o

The cost depends on the content of memory cells:

- The time for a step is equal to the largest operand involved;
- The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed w, where usually $w = \log_2 n$.

The latter model is quite realistic as the word-size of a standard computer that handles a problem of size nmust be at least $\log_2 n$ as otherwise the computer could either not store the problem instance or not address all its memory.

החוחר	EADS © Ernst Mayr, Harald	
	© Ernst Mayr, Harald	Räcke

4 Modelling Issues

27

25

Random Access Machine (RAM)

Operations

 branching (including loops) base jump x jumps to position x in the prosets instruction counter to x; reads the next operation to pe jumpz x R[i] jump to x if R[i] = 0 if not the instruction counter i jumpi i 	gram; rform from register <i>R</i> [<i>x</i>]	
jump to $R[i]$ (indirect jump);		
► arithmetic instructions: +, -, ×,	/	
<pre>▶ R[i] := R[j] + R[k]; R[i] := -R[k];</pre>	The jump-directives are very close to the jump-instructions contained in the assembler language of real machines.	
EADS 4 Modelling Issue © Ernst Mayr, Harald Räcke	¹⁵ 26	

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring (n)
1: $\gamma \leftarrow 2$;
1: $r \leftarrow 2$; 2: for $i = 1 \rightarrow n$ do
3: $r \leftarrow r^2$
4: return r

- running time:
 - uniform model: n steps
 - logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1 = \Theta(2^n)$
- space requirement:
 - uniform model: $\mathcal{O}(1)$
 - logarithmic model: $\mathcal{O}(2^n)$

4 Modelling Issues

There are different types of complexity bounds:

best-case complexity:

$$C_{\rm bc}(n) := \min\{C(x) \mid |x| = n\}$$

Usually easy to analyze, but not very meaningful.

worst-case complexity:

$$C_{wc}(n) := \max\{C(x) \mid |x| = n\}$$

Usually moderately easy to analyze; sometimes too pessimistic.

average case complexity:

$$C_{\text{avg}}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)$$

more general: probability measure μ

$$C_{\operatorname{avg}}(n) := \sum_{x \in I_n} \mu(x) \cdot C(x)$$

EADS © Ernst Mayr, Harald Räcke 4 Modelling Issues

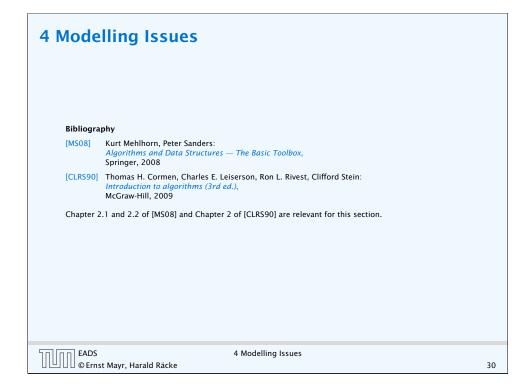
 $C(x) \frac{\cos t}{x}$ of instance

instance x set of instances of length n

|x|

input length of

29



There are different types of complexity bounds:

amortized complexity:

The average cost of data structure operations over a worst case sequence of operations.

randomized complexity:

The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input x. Then take the worst-case over all x with |x| = n.

EADS © Ernst Mayr, Harald Räcke 4 Modelling Issues

29

5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. *exactly* counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions.

Asymptotic Notation

Formal Definition

Let *f* denote functions from \mathbb{N} to \mathbb{R}^+ .

- $\mathcal{O}(f) = \{g \mid \exists c > 0 \exists n_0 \in \mathbb{N}_0 \forall n \ge n_0 : [g(n) \le c \cdot f(n)]\}$ (set of functions that asymptotically grow not faster than f)
- $\Omega(f) = \{g \mid \exists c > 0 \exists n_0 \in \mathbb{N}_0 \forall n \ge n_0 : [g(n) \ge c \cdot f(n)]\}$ (set of functions that asymptotically grow not slower than f)
- $\blacktriangleright \Theta(f) = \Omega(f) \cap \mathcal{O}(f)$ (functions that asymptotically have the same growth as f)
- $o(f) = \{g \mid \forall c > 0 \exists n_0 \in \mathbb{N}_0 \forall n \ge n_0 : [g(n) \le c \cdot f(n)]\}$ (set of functions that asymptotically grow slower than f)
- $\omega(f) = \{g \mid \forall c > 0 \exists n_0 \in \mathbb{N}_0 \forall n \ge n_0 \colon [g(n) \ge c \cdot f(n)]\}$ (set of functions that asymptotically grow faster than f)

EADS	5 Asymptotic Notation	
🛛 🕒 🛛 🖉 © Ernst Mayr, Harald Räcke		31

Asymptotic Notation

Abuse of notation

- **1.** People write $f = \mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is **not** an equality (how could a function be equal to a set of functions).
- **2.** People write $f(n) = \mathcal{O}(q(n))$, when they mean $f \in \mathcal{O}(q)$, with $f : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto f(n)$, and $g : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto g(n)$.
- **3.** People write e.g. h(n) = f(n) + o(g(n)) when they mean that there exists a function $z : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto z(n), z \in o(q)$ such that h(n) = f(n) + z(n).

	,
2. In this context $f(n)$ does not mean the	3. This is particularly useful if you do not
function f evaluated at n , but instead	want to ignore constant factors. For ex-
it is a shorthand for the function itself	
(leaving out domain and codomain and	be determined using $\frac{3}{2}n + o(n)$ compar-
only giving the rule of correspondence	isons.
of the function).	
L	

5 Asymptotic Notation

1				th).
L	-	-	-	-	-	-	-	-	-	-	-

EADS © Ernst Mayr, Harald Räcke

33

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_0 to \mathbb{R}^+_0 .

► $g \in o(f)$: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$ ► $g \in \omega(f)$: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$	Note that for the version of the Lan- lau notation defined here, we as- ume that f and g are positive func- ions. There also exist versions for arbitrary unctions, and for the case that the imes is not infinity.
EADS 5 Asymptotic Notation © Ernst Mayr, Harald Räcke	32

Asymptotic Notation

Abuse of notation

4. People write $\mathcal{O}(f(n)) = \mathcal{O}(g(n))$, when they mean $\mathcal{O}(f(n)) \subseteq \mathcal{O}(q(n))$. Again this is not an equality.

EADS © Ernst Mayr, Harald Räcke 5 Asymptotic Notation

Asymptotic Notation in Equations

How do we interpret an expression like:

 $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$

Here, $\Theta(n)$ stands for an anonymous function in the set $\Theta(n)$ that makes the expression true.

Note that $\Theta(n)$ is on the right hand side, otw. this interpretation is wrong.

EADS © Ernst Mayr, Harald Räcke	5 Asymptotic Notation

Asymptotic Notation in Equations

How do we interpret an expression like:

$$\sum_{i=1}^{n} \Theta(i) = \Theta(n^2)$$

Careful!

"It is understood" that every occurrence of an O-symbol (or $(\Theta, \Omega, o, \omega)$ on the left represents one anonymous function.

Hence, the left side is **not** equal to

$$\Theta(1) + \Theta(2) + \cdots + \Theta(n-1) + \Theta(n)$$

 $\Theta(1) + \Theta(2) + \cdots + \Theta(n-1) + \Theta(n)$ does e interpreta-

The $\Theta(i)$ -symbol on the left rep-

resents one anonymous function $f: \mathbb{N} \to \mathbb{R}^+$, and then $\sum_i f(i)$ is

computed.

34

36

	not really have a reasonable tion.
EADS © Ernst Mayr. Harald Räcke	5 Asymptotic Notation

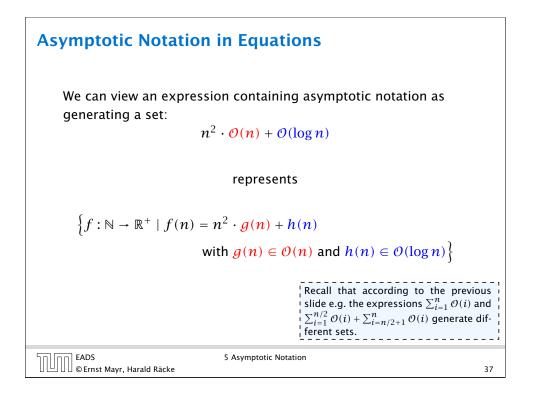
Asymptotic Notation in Equations

How do we interpret an expression like:

 $2n^2 + \mathcal{O}(n) = \Theta(n^2)$

Regardless of how we choose the anonymous function $f(n) \in \mathcal{O}(n)$ there is an anonymous function $g(n) \in \Theta(n^2)$ that makes the expression true.

EADS © Ernst Mayr, Harald Räcke	5 Asymptotic Notation
🛛 🕒 🖯 🕼 Ernst Mayr, Harald Räcke	



Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement btw. two sets:

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n) = \Theta(n^2)$$

represents

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n) \subseteq \Theta(n^2)$$

Note that the equation does not hold. EADS 5 Asymptotic Notation © Ernst Mayr, Harald Räcke

Asymptotic Notation Comments Do not use asymptotic notation within induction proofs. For any constants a, b we have $\log_a n = \Theta(\log_b n)$. Therefore, we will usually ignore the base of a logarithm within asymptotic notation. • In general $\log n = \log_2 n$, i.e., we use 2 as the default base for the logarithm.

Asymptotic Notation

Lemma 3

Let f, g be functions with the property $\exists n_0 > 0 \ \forall n \ge n_0$: f(n) > 0 (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(f(n) + g(n))$
- $\mathcal{O}(f(n)) \cdot \mathcal{O}(g(n)) = \mathcal{O}(f(n) \cdot g(n))$
- $\mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(\max\{f(n), g(n)\})$

The expressions also hold for Ω . Note that this means that $f(n) + g(n) \in \Theta(\max\{f(n), g(n)\}).$

	5 Asymptotic Notation	
UUU©Ernst Mayr, Harald Räcke		39

Asymptotic Notation

EADS

© Ernst Mayr, Harald Räcke

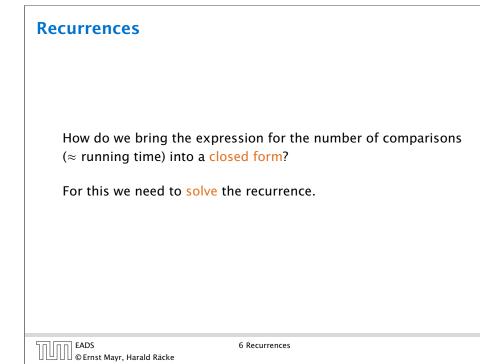
In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- However, suppose that I have two algorithms:
 - Algorithm A. Running time $f(n) = 1000 \log n = O(\log n)$.
 - Algorithm B. Running time $q(n) = \log^2 n$.

Clearly f = o(g). However, as long as $\log n \le 1000$ Algorithm B will be more efficient.

40

S Asymptotic Notation Bibliography [MS08] Kurt Mehlhorn, Peter Sanders: Algorithms and Data Structures — The Basic Toolbox, Springer, 2008 [CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to algorithms (3rd ed.), McGraw-Hill, 2009 Mainly Chapter 3 of [CLRS90]. [MS08] covers this topic in chapter 2.1 but not very detailed. Image: State State



6 Recurrences

Algorithm 2 mergesort(listL)
1: $n \leftarrow \text{size}(L)$
2: if $n \le 1$ return L
3: $L_1 \leftarrow L[1 \cdots \lfloor \frac{n}{2} \rfloor]$
4: $L_2 \leftarrow L[\lfloor \frac{n}{2} \rfloor + 1 \cdots n]$
5: mergesort(L_1)
6: mergesort(L_2)
7: $L \leftarrow \operatorname{merge}(L_1, L_2)$
8: return L

This algorithm requires

$$T(n) = T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + \mathcal{O}(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + \mathcal{O}(n)$$

comparisons when n > 1 and 0 comparisons when $n \le 1$.

EADS 6 Recurrences

Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via induction. It needs experience to make the right guess.

2. Master Theorem

EADS ©Ernst Mayr, Harald Räcke

For a lot of recurrences that appear in the analysis of algorithms this theorem can be used to obtain tight asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this method.

Methods for Solving Recurrences

4. Generating Functions

A more general technique that allows to solve certain types of linear inhomogenous relations and also sometimes non-linear recurrence relations.

5. Transformation of the Recurrence

Sometimes one can transform the given recurrence relations so that it e.g. becomes linear and can therefore be solved with one of the other techniques.

EADS ©Ernst Mayr, Harald Räcke 6 Recurrences

45

47

6.1 Guessing+Induction

Suppose we guess $T(n) \le dn \log n$ for a constant *d*. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$
$$= dn\log n + (c - d)n$$
$$\le dn\log n$$

if we choose $d \ge c$.

Formally one would make an induction proof, where the above is the induction step. The base case is usually trivial.

EADS © Ernst Mayr, Har	6.1
🛛 🛄 🖓 🖉 © Ernst Mayr, Har	ald Räcke

Guessing+Induction

6.1 Guessing+Induction

First we need to get rid of the O-notation in our recurrence:

 $T(n) \leq \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \geq 2\\ 0 & \text{otherwise} \end{cases}$

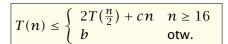
Assume that instead we had

 $T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

EADS 6.1 Guessing+Induction © Ernst Mayr, Harald Räcke 46

6.1 Guessing+Induction



Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

Suppose statem. is true for $n' \in \{2, ..., n-1\}$, and $n \ge 16$. We prove it for n:

$$T(n) \leq 2T\left(\frac{n}{2}\right) + cn$$

$$\leq 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$= dn\log n + (c - d)n$$

$$\leq dn\log n$$
• Note that this proves the statement for $n \in \mathbb{N}_{\geq 2}$, as the statement is wrong for $n = 1$.
• The base case is usually omitted, as it is the same for different recurrences.

Hence, statement is true if we choose $d \ge c$.

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following recurrence:

 $T(n) \leq \begin{cases} 2T(\left\lceil \frac{n}{2} \right\rceil) + cn & n \ge 16\\ b & \text{otherwise} \end{cases}$

Note that we can do this as for constant-sized inputs the running time is always some constant (*b* in the above case).

	6.1 Guessing+Induction	
EADS	6.1 Guessing+induction	
EADS © Ernst Mayr, Harald Räcke		49

6.2 Master Theorem

Note that the cases do not cover all possibilities.

Lemma 4

Let $a \ge 1, b \ge 1$ and $\epsilon > 0$ denote constants. Consider the recurrence

 $T(n) = aT\left(\frac{n}{h}\right) + f(n)$.

Case 1. If $f(n) = O(n^{\log_b(a)-\epsilon})$ then $T(n) = \Theta(n^{\log_b a})$.

Case 2.

If $f(n) = \Theta(n^{\log_b(a)} \log^k n)$ then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$, $k \ge 0$.

Case 3.

If $f(n) = \Omega(n^{\log_b(a)+\epsilon})$ and for sufficiently large n $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 then $T(n) = \Theta(f(n))$.

החוחר	EADS © Ernst Mayr, Harald	
	© Ernst Mayr, Harald	Räcke

6.1 Guessing+Induction

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2} + 1\right\rceil \leq 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\frac{n}{2} + 1 \leq \frac{9}{16}n \leq dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

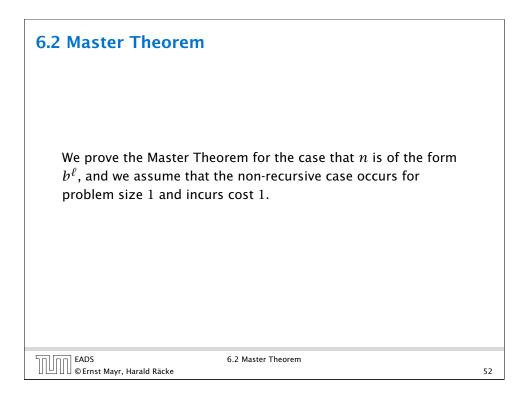
$$\log\frac{9}{16}n = \log n + (\log 9 - 4) = dn\log n + (\log 9 - 4)dn + 2d\log n + cn$$

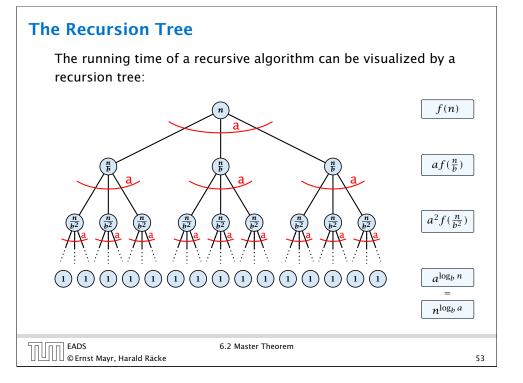
$$\log n \leq \frac{n}{4} \leq dn\log n + (\log 9 - 3.5)dn + cn$$

$$\leq dn\log n - 0.33dn + cn$$

$$\leq dn\log n$$
for a suitable choice of d.

EADS © Ernst Mayr, Harald Räcke	6.1 Guessing+Induction	
🛛 🕒 🛛 🖉 Ernst Mayr, Harald Räcke		50





Case 1. Now suppose that
$$f(n) \leq c n^{\log_b a - \epsilon}$$
.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$\boxed{b^{-i(\log_b a - \epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}} = c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i$$

$$\boxed{\sum_{i=0}^k q^i = \frac{q^{k+1}-1}{q-1}} = c n^{\log_b a - \epsilon} (b^{\epsilon \log_b n} - 1)/(b^{\epsilon} - 1)$$

$$= c n^{\log_b a - \epsilon} (n^{\epsilon} - 1)/(b^{\epsilon} - 1)$$

$$= \frac{c}{b^{\epsilon} - 1} n^{\log_b a} (n^{\epsilon} - 1)/(n^{\epsilon})$$
Hence,

$$T(n) \leq \left(\frac{c}{b^{\epsilon} - 1} + 1\right) n^{\log_b(a)} \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_b a}).$$

55

6.2 Master Theorem This gives $T(n) = n^{\log_b a} + \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right) \ .$ EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem 54

Case 2. Now suppose that
$$f(n) \leq c n^{\log_b a}$$
.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$

$$= c n^{\log_b a} \log_b n$$
Hence,

$$T(n) = \mathcal{O}(n^{\log_b a} \log_b n) \quad \Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log n).$$

Case 2. Now suppose that
$$f(n) \ge c n^{\log_b a}$$
.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$

$$= c n^{\log_b a} \log_b n$$
Hence,

$$T(n) = \Omega(n^{\log_b a} \log_b n) \qquad \Rightarrow T(n) = \Omega(n^{\log_b a} \log n).$$

Case 3. Now suppose that $f(n) \ge dn^{\log_b a + \epsilon}$, and that for sufficiently large n: $af(n/b) \le cf(n)$, for c < 1.

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$
$$\leq \sum_{i=0}^{\log_{b} n-1} c^{i} f(n) + \mathcal{O}(n^{\log_{b} a})$$
$$q < 1: \sum_{i=0}^{n} q^{i} = \frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q} \leq \frac{1}{1-q}$$

Hence,

 $T(n) \leq \mathcal{O}(f(n))$

$$\Rightarrow T(n) = \Theta(f(n)).$$

59

$$\Rightarrow I(n) = \Theta(f)$$

Where did we use
$$f(n) \ge \Omega(n^{\log_b a + \epsilon})$$
?

EADS 6.2 Master Theorem □□□□□ © Ernst Mayr, Harald Räcke

Case 2. Now suppose that
$$f(n) \leq cn^{\log_b a} (\log_b(n))^k$$
.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b\left(\frac{n}{b^i}\right)\right)^k$$

$$\boxed{n = b^\ell \Rightarrow \ell = \log_b n} = cn^{\log_b a} \sum_{i=0}^{\ell-1} \left(\log_b\left(\frac{b^\ell}{b^i}\right)\right)^k$$

$$= cn^{\log_b a} \sum_{i=0}^{\ell-1} (\ell - i)^k$$

$$= cn^{\log_b a} \sum_{i=1}^{\ell} i^k \sum_{i=1}^{k} \frac{1}{k} \ell^{k+1}}{\frac{1}{k} \sum_{i=1}^{\ell} n^{\log_b a} \ell^{k+1}} = T(n) = O(n^{\log_b a} \log^{k+1} n).$$

Example: Multiplying Two Integers

Suppose we want to multiply two *n*-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

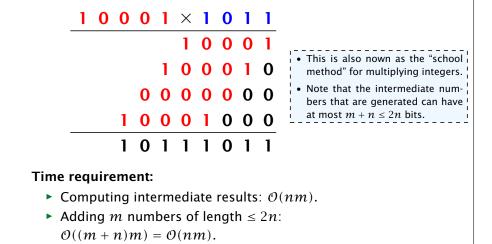
	1	1 (0 1	10	1	0	1	A	
	1 1 0	0 0	0, 0,	1 ₀ 0	0 1	1	1	В	
-	10	1	10	0 1	0	0	0		
This gives tha	at two	<i>n-</i> bit	integ	gers ca	an b	e a	ddeo	d in time $\mathcal{O}(n)$	-

6.2 Master Theorem

EADS © Ernst Mayr, Harald Räcke

Example: Multiplying Two Integers

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).



רח הח EADS	6.2 Master Theorem	
🛛 🛄 🗍 🖉 Ernst Mayr, Harald Räcke		61

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + \mathcal{O}(n)$
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ 6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$ 7: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$\mathcal{O}(n)$

We get the following recurrence:

$$T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n)$$

החוחר	EADS ©Ernst Mayr, Harald Räcke	6.2 Master Theoren
	©Ernst Mayr, Harald Räcke	

63

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

Then it holds that

$$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$
 and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$

Hence,

$$A \cdot B = A_1 B_1 \cdot 2^n + (A_1 B_0 + A_0 B_1) \cdot 2^{\frac{n}{2}} + A_0 \cdot B_0$$

רח (הה) EADS	6.2 Master Theorem	
EADS © Ernst Mayr, Harald Räcke		62

Example: Multiplying Two Integers

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a = 4, b = 2, and $f(n) = \Theta(n)$. Hence, we are in Case 1, since $n = O(n^{2-\epsilon}) = O(n^{\log_b a - \epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

 \Rightarrow Not better then the "school method".

EADS © Ernst Mayr, Harald Räcke

Example: Multiplying Two Integers

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= $(A_0 + A_1) \cdot (B_0 + B_1) - \overline{A_1 B_1} - \overline{A_0 B_0}$

Hence,		
nence,	Algorithm 4 mult(A, B)	
	1: if $ A = B = 1$ then	$\mathcal{O}(1)$
	2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
	3: split A into A_0 and A_1	$\mathcal{O}(n)$
	4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
A more precise	5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
(correct) analysis	6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{\overline{n}}{2})$
would say that computing Z_1	7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	$T(\frac{\bar{n}}{2}) + \mathcal{O}(n)$
needs time	8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$\mathcal{O}(n)$
$T(\frac{n}{2}+1) + \mathcal{O}(n).$		
TU UU EADS	6.2 Master Theorem	
UUU©Ernst Mayr, H	arald Räcke	65

6.3 The Characteristic Polynomial

Consider the recurrence relation:

 $c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_0, c_k \neq 0$).

- T(n) only depends on the k preceding values. This means the recurrence relation is of order k.
- The recurrence is linear as there are no products of T[n]'s.
- If f(n) = 0 then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.

EADS © Ernst Mayr, Harald Räcke

67

Example: Multiplying Two Integers

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n)$$
.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{h}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59}).$

A huge improvement over the "school method".

רח EADS הח	6.2 Master Theorem	
EADS © Ernst Mayr, Harald Räcke		66

6.3 The Characteristic Polynomial

Observations:

- The solution T[1], T[2], T[3],... is completely determined by a set of boundary conditions that specify values for T[1],...,T[k].
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

The Homogenous Case

The solution space

 $S = \left\{ \mathcal{T} = T[1], T[2], T[3], \dots \mid \mathcal{T} \text{ fulfills recurrence relation} \right\}$

is a vector space. This means that if $\mathcal{T}_1, \mathcal{T}_2 \in S$, then also $\alpha \mathcal{T}_1 + \beta \mathcal{T}_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \dots + c_k \cdot \lambda^{n-k} = 0$$

for all $n \ge k$.

EADS © Ernst Mayr, Harald Räcke	6.3 The Characteristic Polynomial

The Homogenous Case

Lemma 5

Assume that the characteristic polynomial has k distinct roots $\lambda_1, \ldots, \lambda_k$. Then all solutions to the recurrence relation are of the form

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$
.

Proof.

EADS

© Ernst Mayr, Harald Räcke

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

We show that the above set of solutions contains one solution for every choice of boundary conditions.

6.3 The Characteristic Polynomial

69

71

The Homogenous Case

Dividing by λ^{n-k} gives that all these constraints are identical to

$$\underbrace{c_0\lambda^k + c_1\lambda^{k-1} + c_2 \cdot \lambda^{k-2} + \dots + c_k}_{\text{characteristic polynomial } P[\lambda]} = 0$$

This means that if λ_i is a root (Nullstelle) of $P[\lambda]$ then $T[n] = \lambda_i^n$ is a solution to the recurrence relation.

Let $\lambda_1, ..., \lambda_k$ be the *k* (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$

is a solution for arbitrary values α_i .

EADS 6.3 The Characteristic Polynomial © Ernst Mayr, Harald Räcke 70

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

$$\begin{array}{rclrcl} \alpha_1 \cdot \lambda_1 & + & \alpha_2 \cdot \lambda_2 & + & \cdots & + & \alpha_k \cdot \lambda_k & = & T[1] \\ \alpha_1 \cdot \lambda_1^2 & + & \alpha_2 \cdot \lambda_2^2 & + & \cdots & + & \alpha_k \cdot \lambda_k^2 & = & T[2] \\ & & & \vdots \\ \alpha_1 \cdot \lambda_1^k & + & \alpha_2 \cdot \lambda_2^k & + & \cdots & + & \alpha_k \cdot \lambda_k^k & = & T[k] \end{array}$$

The Homogenous Case

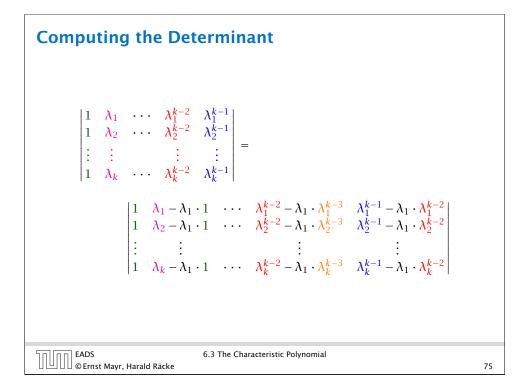
Proof (cont.).

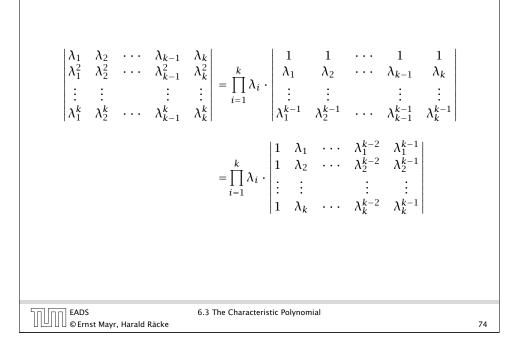
Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

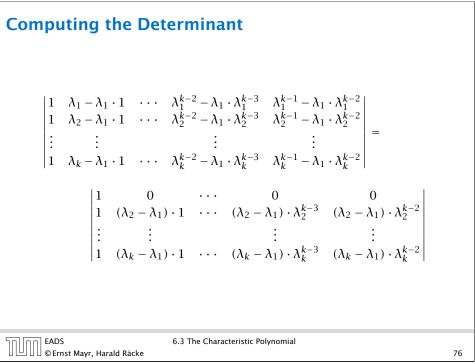
$\left(\begin{array}{c} \lambda_1 \\ \lambda_1^2 \end{array} \right)$	$\lambda_2 \ \lambda_2^2$	 	$\left(\begin{array}{c} \lambda_k \\ \lambda_k^2 \end{array} \right)$	$\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$		$ \begin{pmatrix} T[1] \\ T[2] \end{pmatrix} $
λ_1^k	λ_2^k	: 	λ_k^k	$\left(\begin{array}{c} \vdots \\ \alpha_k \end{array}\right)$	=	$ \left(\begin{array}{c} T[1] \\ T[2] \\ \vdots \\ T[k] \end{array}\right) $

We show that the column vectors are linearly independent. Then the above equation has a solution.

	6.3 The Characteristic Polynomial	
🛛 💾 🛛 🖉 © Ernst Mayr, Harald Räcke		73







Computing the Determinant

$$\begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & (\lambda_{2} - \lambda_{1}) \cdot 1 & \cdots & (\lambda_{2} - \lambda_{1}) \cdot \lambda_{2}^{k-3} & (\lambda_{2} - \lambda_{1}) \cdot \lambda_{2}^{k-2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & (\lambda_{k} - \lambda_{1}) \cdot 1 & \cdots & (\lambda_{k} - \lambda_{1}) \cdot \lambda_{k}^{k-3} & (\lambda_{k} - \lambda_{1}) \cdot \lambda_{k}^{k-2} \end{bmatrix} = \frac{k}{\prod_{i=2}^{k} (\lambda_{i} - \lambda_{1}) \cdot \left| \begin{array}{c} 1 & \lambda_{2} & \cdots & \lambda_{2}^{k-3} & \lambda_{2}^{k-2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda_{k} & \cdots & \lambda_{k}^{k-3} & \lambda_{k}^{k-2} \end{array} \right|$$

EADS 6.3 The Characteristic Polynomial

6.3 The Characteristic Polynomial

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$.

To see this consider the polynomial

$$P[\lambda] \cdot \lambda^{n-k} = c_0 \lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \dots + c_k \lambda^{n-k}$$

Since λ_i is a root we can write this as $Q[\lambda] \cdot (\lambda - \lambda_i)^2$. Calculating the derivative gives a polynomial that still has root λ_i .

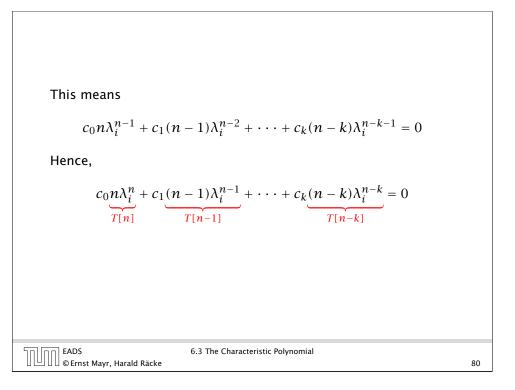
Computing the Determinant

Repeating the above steps gives:

 $\begin{vmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_{k-1}^2 & \lambda_k^2 \\ \vdots & \vdots & & \vdots & \vdots \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_{k-1}^k & \lambda_k^k \end{vmatrix} = \prod_{i=1}^k \lambda_i \cdot \prod_{i>\ell} (\lambda_i - \lambda_\ell)$

Hence, if all λ_i 's are different, then the determinant is non-zero.

	6.3 The Characteristic Polynomial	
🛛 💾 🛛 🖉 © Ernst Mayr, Harald Räcke		78



The Homogeneous Case

Suppose λ_i has multiplicity j. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

$$c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \dots + c_k (n-k)^2 \lambda_i^{n-k} = 0$$

We can continue j - 1 times.

Hence,
$$n^{\ell}\lambda_i^n$$
 is a solution for $\ell \in 0, ..., j-1$.

רח הה EADS	6.3 The Characteristic Polynomial	
🛛 🛄 🗍 🖉 Ernst Mayr, Harald Räcke		81

Example: Fibonacci Sequence

$$T[0] = 0$$

 $T[1] = 1$
 $T[n] = T[n-1] + T[n-2]$ for $n \ge 2$

The characteristic polynomial is

 $\lambda^2 - \lambda - 1$

Finding the roots, gives

$$\lambda_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \left(1 \pm \sqrt{5} \right)$$

5000	EADS © Ernst Mayr, Harald Räcke	6.3
	© Ernst Mayr, Harald Räcke	

The Characteristic Polynomial

83

The Homogeneous Case

Lemma 6

Let $P[\lambda]$ denote the characteristic polynomial to the recurrence

$$c_0T[n] + c_1T[n-1] + \cdots + c_kT[n-k] = 0$$

Let λ_i , i = 1, ..., m be the (complex) roots of $P[\lambda]$ with multiplicities ℓ_i . Then the general solution to the recurrence is given by

$$T[n] = \sum_{i=1}^{m} \sum_{j=0}^{\ell_i - 1} \alpha_{ij} \cdot (n^j \lambda_i^n) .$$

The full proof is omitted. We have only shown that any choice of α_{ij} 's is a solution to the recurrence.

EADS © Ernst Mayr, Harald Räcke	6.3 The Characteristic Polynomial	
🛛 💾 🛯 🖉 © Ernst Mayr, Harald Räcke		82

Example: Fibonacci Sequence

Hence, the solution is of the form

$$\alpha\left(\frac{1+\sqrt{5}}{2}\right)^n + \beta\left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$T[0] = 0$$
 gives $\alpha + \beta = 0$.

T[1] = 1 gives

$$\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1 \Longrightarrow \alpha-\beta=\frac{2}{\sqrt{5}}$$

EADS 6.3 The Characteristic Polynomial © Ernst Mayr, Harald Räcke

Example: Fibonacci Sequence	
Hence, the so	olution is
	$\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$
EADS ©Ernst Mayr, Haral	6.3 The Characteristic Polynomial

The Inhomogeneous Case

The general solution of the recurrence relation is

 $T(n) = T_h(n) + T_p(n) ,$

where T_h is any solution to the homogeneous equation, and T_p is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

EADS	6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Räcke	

ากปกก

The Inhomogeneous Case

Consider the recurrence relation:

$$c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$$

with $f(n) \neq 0$.

While we have a fairly general technique for solving homogeneous, linear recurrence relations the inhomogeneous case is different.

EADS © Ernst Mayr, Harald Räcke

6.3 The Characteristic Polynomial

The Inhomogeneous Case

Example:

$$T[n] = T[n-1] + 1$$
 $T[0] = 1$

Then,

85

87

T[n-1] = T[n-2] + 1 $(n \ge 2)$

Subtracting the first from the second equation gives,

$$T[n] - T[n-1] = T[n-1] - T[n-2] \qquad (n \ge 2)$$

or

$$T[n] = 2T[n-1] - T[n-2]$$
 $(n \ge 2)$

I get a completely determined recurrence if I add T[0] = 1 and T[1] = 2.

EADS © Ernst Mayr, Harald Räcke

The Inhomogeneous Case

Example: Characteristic polynomial:

$$\underbrace{\lambda^2 - 2\lambda + 1}_{(\lambda - 1)^2} = 0$$

Then the solution is of the form

$$T[n] = \alpha 1^n + \beta n 1^n = \alpha + \beta n$$

T[0] = 1 gives $\alpha = 1$.

$$T[1] = 2$$
 gives $1 + \beta = 2 \Longrightarrow \beta = 1$.

	6.3 The Characteristic Polynomial	
🛛 💾 🛛 🖉 © Ernst Mayr, Harald Räcke		89

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

Shift:

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$
$$= 2T[n-2] - T[n-3] + 2n - 3$$

Difference:

$$T[n] - T[n-1] = 2T[n-1] - T[n-2] + 2n - 1$$
$$- 2T[n-2] + T[n-3] - 2n + 3$$

$$T[n] = 3T[n-1] - 3T[n-2] + T[n-3] + 2$$

and so on...

EADS © Ernst Mayr, Harald Räcke	6.3 The Characteristic Polynomial
🛛 🕒 🛛 🖉 Ernst Mayr, Harald Räcke	

The Inhomogeneous Case

If f(n) is a polynomial of degree r this method can be applied r + 1 times to obtain a homogeneous equation:

$$T[n] = T[n-1] + n^2$$

Shift:

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

Difference:

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

۲ח (הה) EADS	6.3 The Characteristic Polynomial	
EADS ©Ernst Mayr, Harald Räcke		90

6.4 Generating Functions
Definition 7 (Generating Function)
Let
$$(a_n)_{n\geq 0}$$
 be a sequence. The corresponding
• generating function (Erzeugendenfunktion) is
 $F(z) := \sum_{n\geq 0} a_n z^n;$
• exponential generating function (exponentielle
Erzeugendenfunktion) is
 $F(z) = \sum_{n\geq 0} \frac{a_n}{n!} z^n.$

EADS © Ernst Mayr, Harald Räcke

91

6.4 Generating Functions

6.4 Generating Functions

Example 8

1. The generating function of the sequence (1, 0, 0, ...) is

F(z) = 1.

2. The generating function of the sequence (1, 1, 1, ...) is

$$F(z)=\frac{1}{1-z}\,.$$

ing Functions
93

6.4 Generating Functions The arithmetic view: We view a power series as a function $f : \mathbb{C} \to \mathbb{C}$. Then, it is important to think about convergence/convergence radius etc.

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let $f = \sum_{n>0} a_n z^n$ and $g = \sum_{n>0} b_n z^n$.

- Equality: *f* and *g* are equal if $a_n = b_n$ for all *n*.
- Addition: $f + g := \sum_{n>0} (a_n + b_n) z^n$.
- Multiplication: $f \cdot g := \sum_{n \ge 0} c_n z^n$ with $c = \sum_{p=0}^n a_p b_{n-p}$.

There are no convergence issues here.

FADS	6.4 Generating Functions	
EADS © Ernst Mayr, Harald Räcke		94

6.4 Generating Functions

What does $\sum_{n\geq 0} z^n = \frac{1}{1-z}$ mean in the algebraic view?

It means that the power series 1 - z and the power series $\sum_{n\geq 0} z^n$ are invers, i.e.,

$$(1-z)\cdot \left(\sum_{n\geq 0}^{\infty}z^n\right)=1$$
.

This is well-defined.

EADS

©Ernst Mayr, Harald Räcke

6.4 Generating Functions

Suppose we are given the generating function

$$\sum_{n \ge 0} z^n = \frac{1}{1-z}$$

Formally the derivative of a formal

power series $\sum_{n\geq 0} a_n z^n$ is defined as $\sum_{n\geq 0} na_n z^{n-1}$.

The known rules for differentiation

work for this definition. In partic-

ular, e.g. the derivative of $\frac{1}{1-z}$ is

Note that this requires a proof if we consider power series as algebraic objects. However, we did not prove

 $\frac{1}{(1-z)^2}$

this in the lecture.

We can compute the derivative:

$$\underbrace{\sum_{n \ge 1} n z^{n-1}}_{\sum_{n \ge 0} (n+1) z^n} = \frac{1}{(1-z)^2}$$

Hence, the generating function of the sequence $a_n = n + 1$ is $1/(1-z)^2$.

EADS © Ernst Mayr, Harald Räcke	6.4 Generating Functions	

6.4 Generating Functions

Computing the *k*-th derivative of $\sum z^n$.

$$\sum_{n \ge k} n(n-1) \cdot \ldots \cdot (n-k+1) z^{n-k} = \sum_{n \ge 0} (n+k) \cdot \ldots \cdot (n+1) z^n$$
$$= \frac{k!}{(1-z)^{k+1}} .$$

Hence:

$$\sum_{n \ge 0} \binom{n+k}{k} z^n = \frac{1}{(1-z)^{k+1}}$$

The generating function of the sequence $a_n = \binom{n+k}{k}$ is $\frac{1}{(1-z)^{k+1}}$.

Functions

50 00	EADS	6.4 Generating
	EADS © Ernst Mayr, Harald Räcke	

99

97

6.4 Generating Functions

We can repeat this

$$\sum_{n \ge 0} (n+1)z^n = \frac{1}{(1-z)^2}$$

Derivative:

$$\sum_{n\geq 1} n(n+1)z^{n-1} = \frac{2}{(1-z)^3}$$

 $\sum_{n\geq 0} (n+1)(n+2)z^n$

Hence, the generating function of the sequence $a_n = (n+1)(n+2)$ is $\frac{2}{(1-z)^3}$.

רח (הם EADS	6.4 Generating Functions	
🛛 💾 🛛 🖉 © Ernst Mayr, Harald Räcke		98

6.4 Generating Functions $\sum_{n\geq 0} nz^n = \sum_{n\geq 0} (n+1)z^n - \sum_{n\geq 0} z^n$ $= \frac{1}{(1-z)^2} - \frac{1}{1-z}$ $= \frac{z}{(1-z)^2}$ The generating function of the sequence $a_n = n$ is $\frac{z}{(1-z)^2}$.

6.4 Generating Functions

We know

$$\sum_{n\geq 0} y^n = \frac{1}{1-y}$$

Hence,

$$\sum_{n\geq 0} a^n z^n = \frac{1}{1-az}$$

The generating function of the sequence $f_n = a^n$ is $\frac{1}{1-az}$.

EADS 6.4 Generating Functions © Ernst Mayr, Harald Räcke 101

Example: $a_n = a_{n-1} + 1$, $a_0 = 1$

Solving for A(z) gives

$$\sum_{n\geq 0} a_n z^n = A(z) = \frac{1}{(1-z)^2} = \sum_{n\geq 0} (n+1) z^n$$

Hence, $a_n = n + 1$.

EADS المال الم	6.4 Generating Functions	
UUUC © Ernst Mayr, Harald Räcke		103

Example: $a_n = a_{n-1} + 1$, $a_0 = 1$

Suppose we have the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} (a_{n-1} + 1) z^n$
= $1 + z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} z^n$
= $z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} z^n$
= $zA(z) + \sum_{n \ge 0} z^n$
= $zA(z) + \frac{1}{1-z}$
6.4 Generating Functions

Some Ge	enerating Functions	i	
[n-th sequence element	generating function	
	1	$\frac{1}{1-z}$	
	n + 1	$\frac{1}{(1-z)^2}$	
	$\binom{n+k}{k}$	$\frac{1}{(1-z)^{k+1}}$	
	n	$\frac{z}{(1-z)^2}$	
	a^n	$\frac{1}{1-az}$	
	n^2	$\frac{z(1+z)}{(1-z)^3}$	
	$\frac{1}{n!}$	e ^z	
EADS 6.4 Generating Functions © Ernst Mayr, Harald Räcke 104			

Some Generating Functions

	n-th sequence element	generating function
	cf_n	cF
	$f_n + g_n$	F + G
	$\sum_{i=0}^{n} f_i g_{n-i}$	$F \cdot G$
	f_{n-k} $(n \ge k); 0$ otw.	z^kF
	$\sum_{i=0}^{n} f_i$	$\frac{F(z)}{1-z}$
	nf_n	$z \frac{\mathrm{d}F(z)}{\mathrm{d}z}$
	$c^n f_n$	F(cz)
EADS © Ernst	6.4 Generati Mayr, Harald Räcke	ng Functions

Example: $a_n = 2a_{n-1}, a_0 = 1$

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

2. Transform right hand side so that recurrence can be plugged in:

$$A(z) = a_0 + \sum_{n \ge 1} a_n z^n$$

2. Plug in:

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

EADS	6.4 Generating Functions
🛛 🗌 © Ernst Mayr. Harald Räcke	

Solving Recursions with Generating Functions

- 1. Set $A(z) = \sum_{n \ge 0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- 3. Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- **4.** Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.
- **5.** Write f(z) as a formal power series. Techniques:
 - partial fraction decomposition (Partialbruchzerlegung)
 - lookup in tables
- **6.** The coefficients of the resulting power series are the a_n .

Soloo EADS	6.4 Generating Functions	
EADS © Ernst Mayr, Harald Räcke	-	106

Example: $a_n = 2a_{n-1}, a_0 = 1$

EADS

107

3. Transform right hand side so that infinite sums can be replaced by A(z) or by simple function.

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$
$$= 1 + 2z \sum_{n \ge 1} a_{n-1}z^{n-1}$$
$$= 1 + 2z \sum_{n \ge 0} a_n z^n$$
$$= 1 + 2z \cdot A(z)$$
4. Solve for $A(z)$.
$$A(z) = \frac{1}{1 - 2z}$$
6.4 Generating Functions

Example: $a_n = 2a_{n-1}, a_0 = 1$	
5. Rewrite $f(z)$ as a power series:	
$\sum_{n \ge 0} a_n z^n = A(z) = \frac{1}{1 - 2z} = \sum_{n \ge 0} 2^n z^n$	
ADS 6.4 Generating Functions	
CErnst Mayr, Harald Räcke	109

Example:
$$a_n = 3a_{n-1} + n$$
, $a_0 = 1$

2./3. Transform right hand side:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} a_n z^n$
= $1 + \sum_{n \ge 1} (3a_{n-1} + n) z^n$
= $1 + 3z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} n z^n$
= $1 + 3z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} n z^n$
= $1 + 3z A(z) + \frac{z}{(1-z)^2}$

6.4 Generating Functions

111

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

1. Set up generating function:

 ∇ 10

$A(z) = \sum_{n \ge 0} a_n z^n$	
$n \ge 0$	
EADS 6.4 Generating Functions	110

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$		
4. Solve for $A(z)$:		
$A(z) = 1 + 3zA(z) + \frac{z}{(1-z)^2}$		
gives		
$A(z) = \frac{(1-z)^2 + z}{(1-3z)(1-z)^2} = \frac{z^2 - z + 1}{(1-3z)(1-z)^2}$		
EADS 6.4 Generating Functions	112	

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

$$\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}$$

This gives

$$z^{2} - z + 1 = A(1 - z)^{2} + B(1 - 3z)(1 - z) + C(1 - 3z)$$

= $A(1 - 2z + z^{2}) + B(1 - 4z + 3z^{2}) + C(1 - 3z)$
= $(A + 3B)z^{2} + (-2A - 4B - 3C)z + (A + B + C)$

50 00	EADS © Ernst Mayr, Harald Räcke
	© Ernst Mayr, Harald Räcke

6.4 Generating Functions

113

115

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$ 5. Write f(z) as a formal power series: $A(z) = \frac{7}{4} \cdot \frac{1}{1-3z} - \frac{1}{4} \cdot \frac{1}{1-z} - \frac{1}{2} \cdot \frac{1}{(1-z)^2}$ $= \frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n+1)z^n$ $= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{4} - \frac{1}{2}(n+1)\right)z^n$ $= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{2}n - \frac{3}{4}\right)z^n$ 6. This means $a_n = \frac{7}{4}3^n - \frac{1}{2}n - \frac{3}{4}$.

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

5. Write f(z) as a formal power series:

This leads to the following conditions:

$$A + B + C = 1$$
$$2A + 4B + 3C = 1$$
$$A + 3B = 1$$

which gives

$$A = \frac{7}{4}$$
 $B = -\frac{1}{4}$ $C = -\frac{1}{2}$

EADS	6.4 Generating Functions	
🛛 🕒 🛛 🖉 Ernst Mayr, Harald Räcke		114

6.5 Transformation of the Recurrence $f_0 = 1$ $f_1 = 2$ $f_n = f_{n-1} \cdot f_{n-2} \text{ for } n \ge 2.$ Define $g_n := \log f_n.$ Then $g_n = g_{n-1} + g_{n-2} \text{ for } n \ge 2$ $g_1 = \log 2 = 1 (\text{for } \log = \log_2), g_0 = 0$ $g_n = F_n (n\text{-th Fibonacci number})$ $f_n = 2^{F_n}$

EADS 6.5 © Ernst Mayr, Harald Räcke

6.5 Transformation of the Recurrence

6.5 Transformation of the Recurrence

Example 10

$$f_1 = 1$$

 $f_n = 3f_{\frac{n}{2}} + n$; for $n = 2^k$, $k \ge 1$;

Define

 $g_k := f_{2^k}$.

Then:

$$g_0 = 1$$

 $g_k = 3g_{k-1} + 2^k, \ k \ge 1$

EADS	6.5 Transformation of the Recurrence	117
🛛 🕒 🛛 🖉 © Ernst Mayr, Harald Räcke		117

6 Recurrences Let $n = 2^k$:

$$g_k = 3^{k+1} - 2^{k+1}, \text{ hence}$$

$$f_n = 3 \cdot 3^k - 2 \cdot 2^k$$

$$= 3(2^{\log 3})^k - 2 \cdot 2^k$$

$$= 3(2^k)^{\log 3} - 2 \cdot 2^k$$

$$= 3n^{\log 3} - 2n .$$

119

EADS 6.5 Transformation of the Recurrence © Ernst Mayr, Harald Räcke

6 Recurrences

We get

$$g_{k} = 3 [g_{k-1}] + 2^{k}$$

$$= 3 [3g_{k-2} + 2^{k-1}] + 2^{k}$$

$$= 3^{2} [g_{k-2}] + 32^{k-1} + 2^{k}$$

$$= 3^{2} [3g_{k-3} + 2^{k-2}] + 32^{k-1} + 2^{k}$$

$$= 3^{3}g_{k-3} + 3^{2}2^{k-2} + 32^{k-1} + 2^{k}$$

$$= 2^{k} \cdot \sum_{i=0}^{k} \left(\frac{3}{2}\right)^{i}$$

$$= 2^{k} \cdot \frac{\left(\frac{3}{2}\right)^{k+1} - 1}{1/2} = 3^{k+1} - 2^{k+1}$$
EADS
© Ernst Mayr, Harald Räck
6.5 Transformation of the Recurrence
118

6 Recurrences Bibliography [MS08] Kurt Mehlhorn, Peter Sanders: Algorithms and Data Structures — The Basic Toolbox, Springer, 2008 [CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009 [Liu85] Chung Laung Liu: Elements of Discrete Mathematics McGraw-Hill, 1985 The Karatsuba method can be found in [MS08] Chapter 1. Chapter 4.3 of [CLRS90] covers the "Substitution method" which roughly corresponds to "Guessing+induction". Chapters 4.4, 4.5, 4.6 of this book cover the master theorem. Methods using the characteristic polynomial and generating functions can be found in [Liu85] Chapter 10. EADS © Ernst Mayr, Harald Räcke 6.5 Transformation of the Recurrence 120

Part III	
Data Structure	S
EADS © Ernst Mayr, Harald Räcke	120

Dynamic Set Operations

- S. search(k): Returns pointer to object x from S with key[x] = k or null.
- S. insert(x): Inserts object x into set S. key[x] must not currently exist in the data-structure.
- S. delete(x): Given pointer to object x from S, delete x from the set.
- **S. minimum()**: Return pointer to object with smallest key-value in S.
- S. maximum(): Return pointer to object with largest key-value in S.
- ► *S*. successor(*x*): Return pointer to the next larger element in *S* or null if *x* is maximum.
- S. predecessor(x): Return pointer to the next smaller element in *S* or null if *x* is minimum.

EADS 🛛 🖓 © Ernst Mayr, Harald Räcke

122

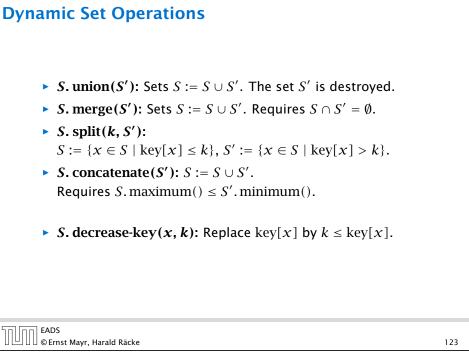
Abstract Data Type

An abstract data type (ADT) is defined by an interface of operations or methods that can be performed and that have a defined behavior.

The data types in this lecture all operate on objects that are represented by a [key, value] pair.

- The key comes from a totally ordered set, and we assume that there is an efficient comparison function.
- > The value can be anything; it usually carries satellite information important for the application that uses the ADT.

EADS © Ernst Mayr, Harald Räcke



Examples of ADTs

Stack:

- S.push(x): Insert an element.
- S.pop(): Return the element from S that was inserted most recently; delete it from S.
- S.empty(): Tell if S contains any object.

Queue:

- ► *S*.enqueue(*x*): Insert an element.
- S.dequeue(): Return the element that is longest in the structure; delete it from S.
- **S.empty()**: Tell if S contains any object.

Priority-Queue:

- ► *S*.insert(*x*): Insert an element.
- S.delete-min(): Return the element with lowest key-value; delete it from S.

7 Dictionary

Dictionary:

- S.insert(x): Insert an element x.
- ► *S*.delete(*x*): Delete the element pointed to by *x*.
- S.search(k): Return a pointer to an element *e* with key[*e*] = k in S if it exists; otherwise return null.

EADS © Ernst Mayr, Harald Räcke 7 Dictionary

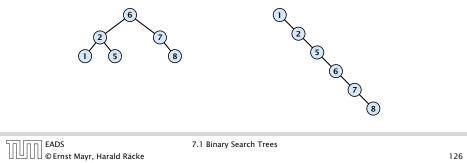
125

7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node v have a smaller key-value than key[v] and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

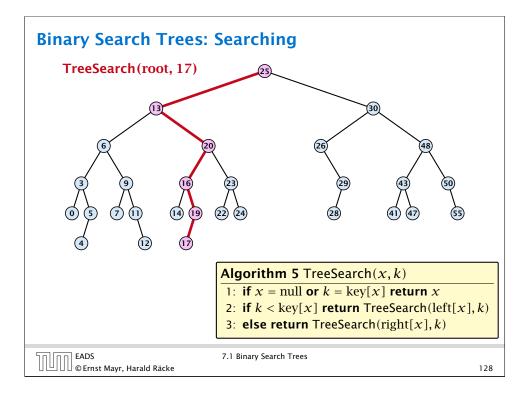
Examples:

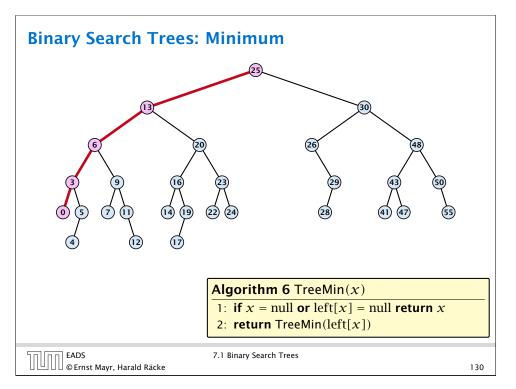


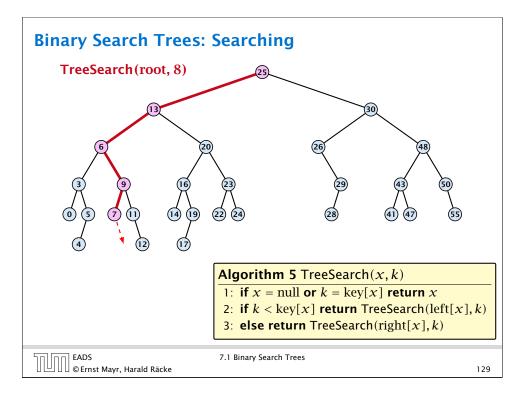
7.1 Binary Search Trees

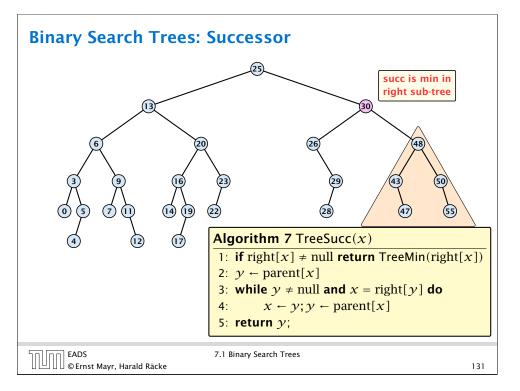
We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

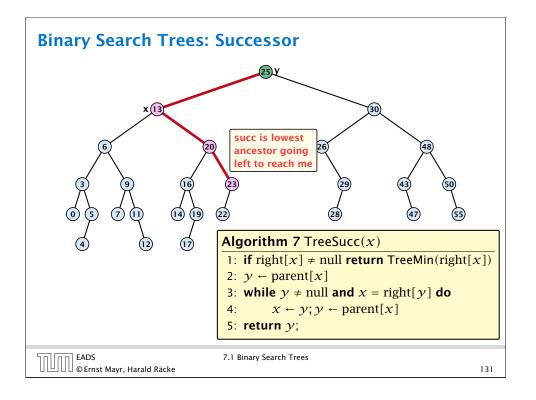
- T. insert(x)
- ► T. delete(x)
- ► *T*. search(*k*)
- ► T. successor(x)
- T. predecessor(x)
- T. minimum()
- T. maximum()

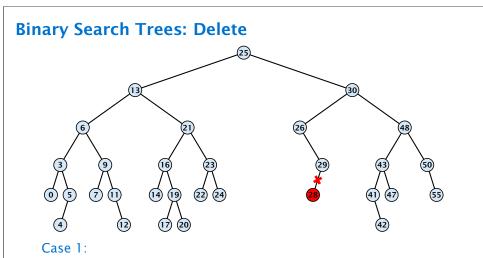






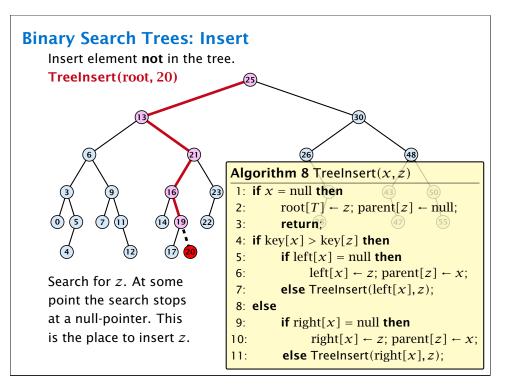


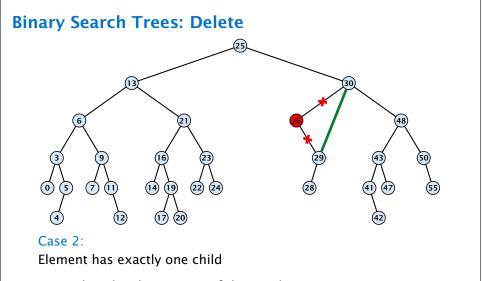




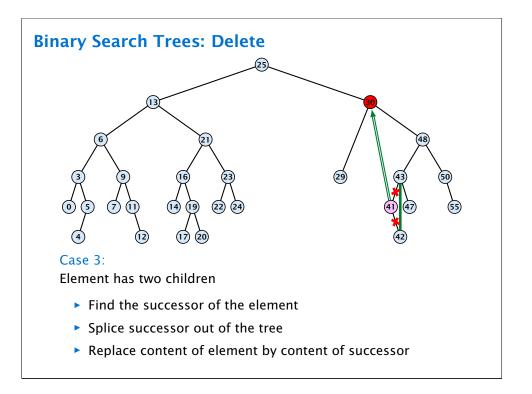
Element does not have any children

Simply go to the parent and set the corresponding pointer to null.





 Splice the element out of the tree by connecting its parent to its successor.



Binary Search Trees: Delete

5

Algorithm 9 TreeDelete(z)	
1: if left[z] = null or right[z] = null	
2: then $y \leftarrow z$ else $y \leftarrow$ TreeSu	cc(z); select y to splice out
3: if left[γ] \neq null	
4: then $x \leftarrow left[y]$ else $x \leftarrow ri$	ght[y]; x is child of y (or null
5: if $x \neq$ null then parent[x] \leftarrow pare	nt[y]; parent[x] is correct
6: if parent[y] = null then) (Internet in the second s
7: $\operatorname{root}[T] \leftarrow x$	
8: else	
9: if $y = left[parent[y]]$ then	fix pointer to x
10: $\operatorname{left}[\operatorname{parent}[y]] \leftarrow x$	
11: else	
12: right[parent[y]] $\leftarrow x$	J
13: if $y \neq z$ then copy y-data to z	
EADS 7.1 Binary Search	Trees
🛛 © Ernst Mayr, Harald Räcke	

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $O(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.

7.2 Red Black Trees

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

EADS	7.2 Red Black Trees	
🛛 🛄 🔲 © Ernst Mayr, Harald Räcke		136

7.2 Red Black Trees

Lemma 12

A red-black tree with n internal nodes has height at most $O(\log n)$.

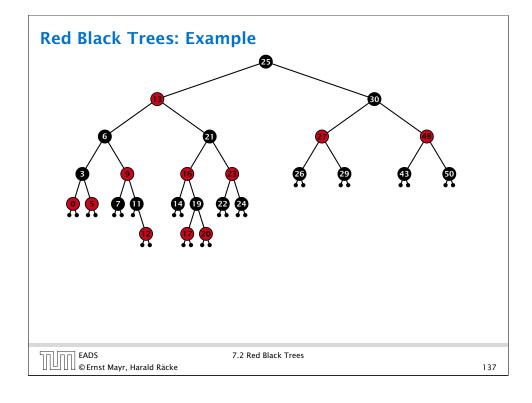
Definition 13

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:

Lemma 14

A sub-tree of black height bh(v) in a red black tree contains at least $2^{bh(v)} - 1$ internal vertices.



7.2 Red Black Trees Proof of Lemma 14. Induction on the height of v. base case (height(v) = 0) If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf. The black height of v is 0. The sub-tree rooted at v contains 0 = 2^{bh(v)} - 1 inner vertices.

7.2 Red Black Trees

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height(v) > 0.
- \triangleright v has two children with strictly smaller height.
- These children (c_1 , c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) - 1.$
- By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} - 1$ internal vertices.
- Then T_{ν} contains at least $2(2^{bh(\nu)-1}-1) + 1 \ge 2^{bh(\nu)} 1$ vertices.

140

```
EADS
© Ernst Mayr, Harald Räcke
```

7.2 Red Black Trees

7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data.

EADS

🛛 🖓 © Ernst Mayr, Harald Räcke

142

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on *P* must be black, since a red node must be followed by a black node.

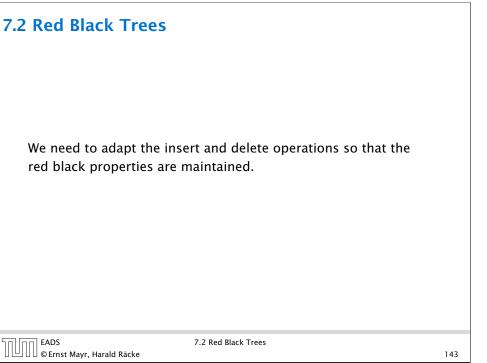
Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 < n$.

Hence, $h \leq 2\log(n+1) = \mathcal{O}(\log n)$.

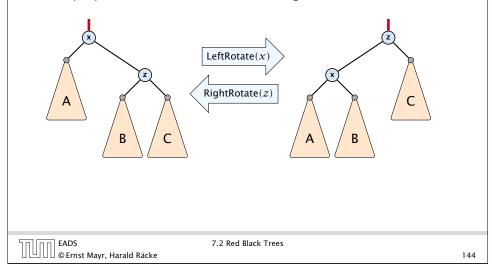
EADS © Ernst Mayr, Harald Räcke

7.2 Red Black Trees

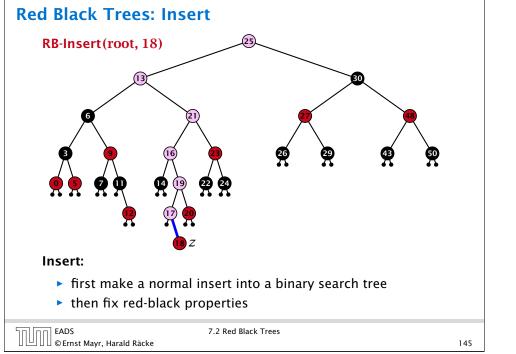


Rotations

The properties will be maintained through rotations:



Red Black Trees: Insert Invariant of the fix-up algorithm: *z* is a red node the black-height property is fulfilled at every node the only violation of red-black properties occurs at *z* and parent[*z*] either both of them are red (most important case) or the parent does not exist (violation since root must be black) If *z* has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

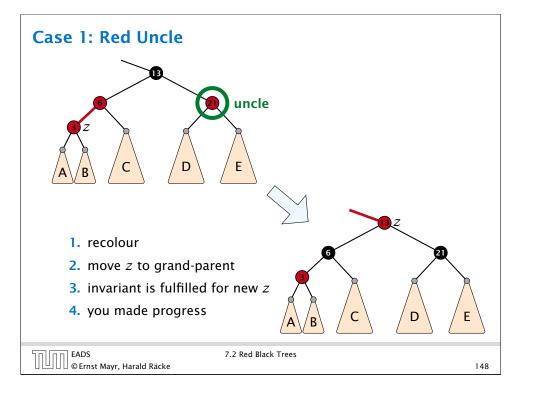


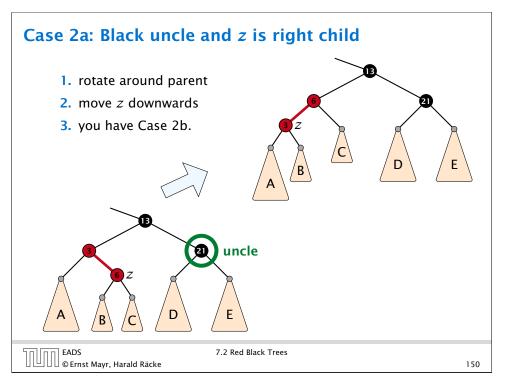
d Bl	lack Trees: Insert
Alg	porithm 10 InsertFix(<i>z</i>)
1:	while $parent[z] \neq null and col[parent[z]] = red do$
2:	if $parent[z] = left[gp[z]]$ then z in left subtree of grandparent
3:	$uncle \leftarrow right[grandparent[z]]$
4:	if col[<i>uncle</i>] = red then Case 1: uncle re
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$
7:	else Case 2: uncle blac
8:	if $z = right[parent[z]]$ then 2a: z right chil
9:	$z \leftarrow p[z]$; LeftRotate(z);
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red; 2b: z \text{ left child}$
11:	RightRotate $(gp[z]);$
12:	else same as then-clause but right and left exchanged
13:	$col(root[T]) \leftarrow black;$

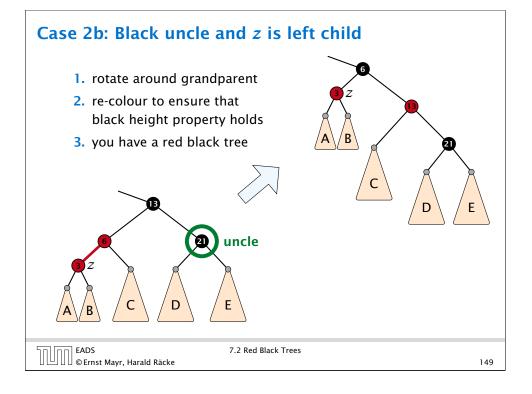
EADS © Ernst Mayr, Harald Räcke

146

EADS © Ernst Mayr, Harald Räcke







Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case $2a \rightarrow Case 2b \rightarrow red-black$ tree
- Case $2b \rightarrow$ red-black tree

Performing Case 1 at most $O(\log n)$ times and every other case at most once, we get a red-black tree. Hence $O(\log n)$ re-colorings and at most 2 rotations.

Red Black Trees: Delete

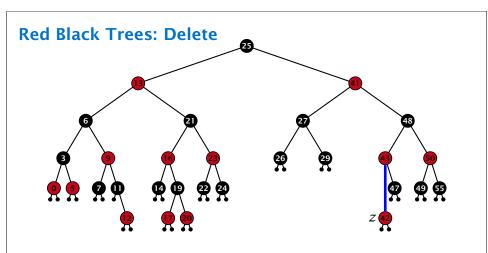
First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

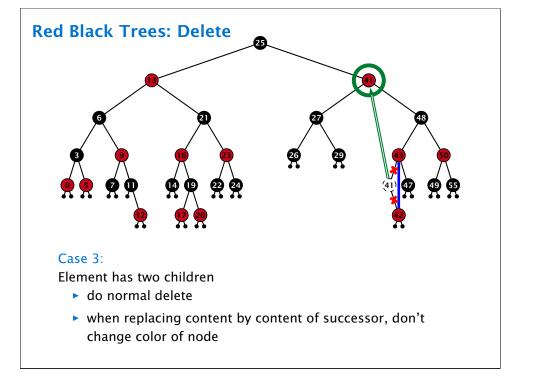
- Parent and child of *x* were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

EADS © Ernst Mayr, Harald Räcke	7.2 Red Black Trees	152

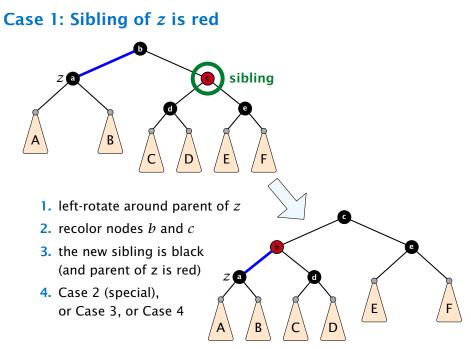


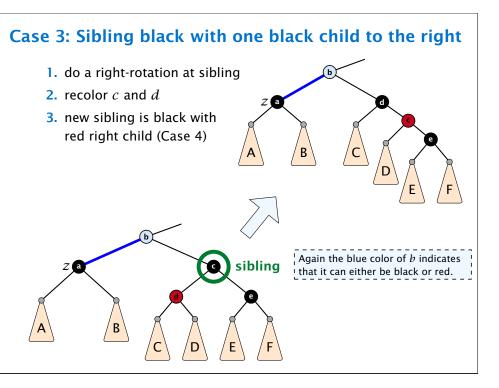
Delete:

- deleting black node messes up black-height property
- if *z* is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

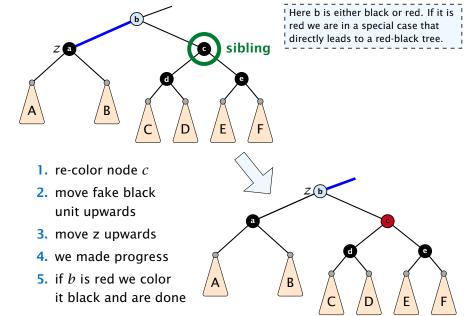


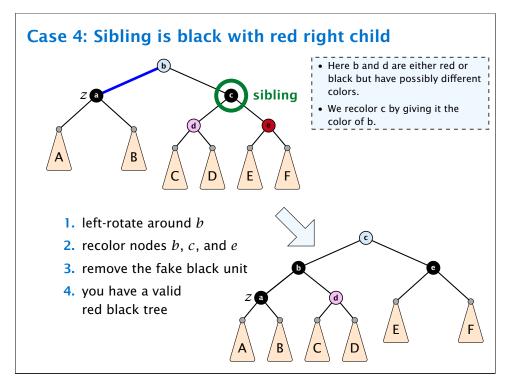
Red Black Trees: Delete	
Invariant of the fix-up algorithm	
 the node z is black 	
 if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled 	
Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.	





Case 2: Sibling is black with two black children





Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 \rightarrow Case 2 (special) \rightarrow red black tree Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree Case 1 \rightarrow Case 4 \rightarrow red black tree
- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- \blacktriangleright Case 4 \rightarrow red black tree

Performing Case 2 at most $O(\log n)$ times and every other step at most once, we get a red black tree. Hence, $O(\log n)$ re-colorings and at most 3 rotations.

50 00	EADS © Ernst Mayr,		
	© Ernst Mavr.	Harald	Räcke

7.2 Red Black Trees

160

7.3 AVL-Trees

Definition 15

AVL-trees are binary search trees that fulfill the following balance condition. For every node v

 $|\text{height}(\text{left sub-tree}(v)) - \text{height}(\text{right sub-tree}(v))| \le 1$.

Lemma 16

An AVL-tree of height h contains at least $F_{h+2} - 1$ and at most $2^{h} - 1$ internal nodes, where F_{n} is the *n*-th Fibonacci number $(F_0 = 0, F_1 = 1)$, and the height is the maximal number of edges from the root to an (empty) dummy leaf.

Red-Black Trees Bibliography [CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to Algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009 Red black trees are covered in detail in Chapter 13 of [CLRS90]. EADS © Ernst Mayr, Harald Räcke 7.2 Red Black Trees 161

AVL trees

Proof.

nn EADS

The upper bound is clear, as a binary tree of height *h* can only contain

$$\sum_{j=0}^{h-1} 2^j = 2^h - 1$$

7.3 AVL-Trees

internal nodes.

AVL trees

Proof (cont.)

Induction (base cases):

- 1. an AVL-tree of height h = 1 contains at least one internal node, $1 \ge F_3 1 = 2 1 = 1$.
- 2. an AVL tree of height h = 2 contains at least two internal nodes, $2 \ge F_4 1 = 3 1 = 2$

 \mathcal{Q}

EADS © Ernst Mayr, Harald Räcke

163

165

7.3 AVL-Trees

An AVL-tree of height h contains at least $F_{h+2} - 1$ internal nodes. Since

7.3 AVL-Trees

 $n+1 \ge F_{h+2} = \Omega\left(\left(rac{1+\sqrt{5}}{2}
ight)^h
ight)$,

we get

EADS

U]UU©Ernst Mayr, Harald Räcke

$$n \ge \Omega\left(\left(\frac{1+\sqrt{5}}{2}\right)^{h}\right)$$

7.3 AVL-Trees

and, hence, $h = O(\log n)$.

Induction step:

An AVL-tree of height $h \ge 2$ of minimal size has a root with sub-trees of height h - 1 and h - 2, respectively. Both, sub-trees have minmal node number.

Let

 $g_h := 1 + \text{minimal size of AVL-tree of height } h$.

Then

$g_1 = 2$	$= F_3$
$g_2 = 3$	$= F_4$
${g}_h - 1 = 1 + {g}_{h-1} - 1 + {g}_{h-2} - 1$,	hence
$g_h = g_{h-1} + g_{h-2}$	$= F_{h+2}$

7.3 AVL-Trees

We need to maintain the balance condition through rotations.

For this we store in every internal tree-node v the balance of the node. Let v denote a tree node with left child c_{ℓ} and right child c_r .

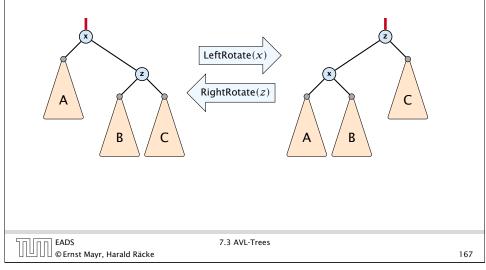
 $balance[v] := height(T_{c_{\ell}}) - height(T_{c_{r}})$,

where $T_{c_{\ell}}$ and $T_{c_{r}}$, are the sub-trees rooted at c_{ℓ} and c_{r} , respectively.

EADS © Ernst Mayr, Harald Räcke

Rotations

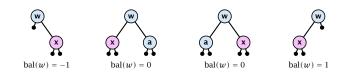
The properties will be maintained through rotations:



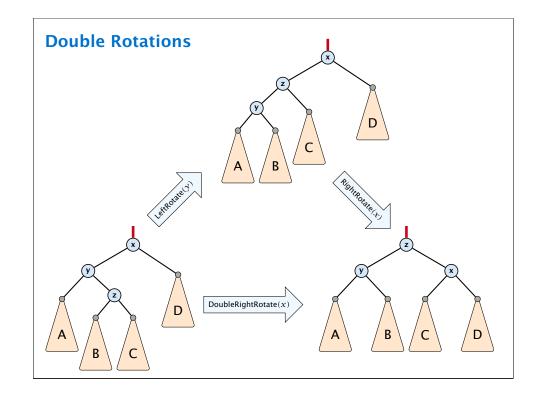
AVL-trees: Insert

Note that before the insertion w is right above the leaf level, i.e., x replaces a child of w that was a dummy leaf.

- Insert like in a binary search tree.
- Let *w* denote the parent of the newly inserted node *x*.
- One of the following cases holds:



- If $bal[w] \neq 0$, T_w has changed height; the balance-constraint may be violated at ancestors of w.
- Call AVL-fix-up-insert(parent[w]) to restore the balance-condition.



AVL-trees: Insert

EADS

©Ernst Mayr, Harald Räcke

Invariant at the beginning of AVL-fix-up-insert(v):

- 1. The balance constraints hold at all descendants of v.
- **2.** A node has been inserted into T_c , where c is either the right or left child of v.
- **3.** T_c has increased its height by one (otw. we would already have aborted the fix-up procedure).
- **4.** The balance at node *c* fulfills balance $[c] \in \{-1, 1\}$. This holds because if the balance of c is 0, then T_c did not change its height, and the whole procedure would have been aborted in the previous step.

169

Note that these constraints hold for the first call AVL-fix-up-insert(parent[w]).

AVL-trees: Insert

Algorithm 11 AVL-fix-up-insert(v)

- 1: **if** balance[v] \in {-2, 2} **then** DoRotationInsert(v);
- 2: if balance $[v] \in \{0\}$ return;
- 3: AVL-fix-up-insert(parent[v]);

We will show that the above procedure is correct, and that it will do at most one rotation.

EADS © Ernst Mayr, Harald Räcke

7.3 AVL-Trees

171

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We have to show that after doing one rotation all balance constraints are fulfilled.

We show that after doing a rotation at v:

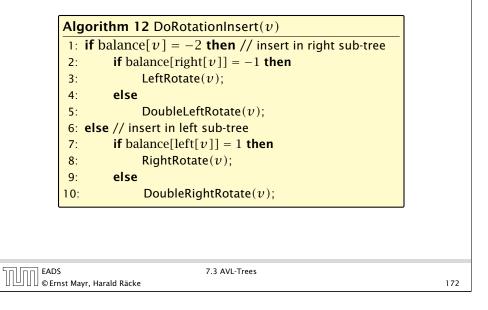
- \triangleright v fulfills balance condition.
- \blacktriangleright All children of v still fulfill the balance condition.
- \blacktriangleright The height of T_v is the same as before the insert-operation took place.

We only look at the case where the insert happened into the right sub-tree of v. The other case is symmetric.

nn EADS

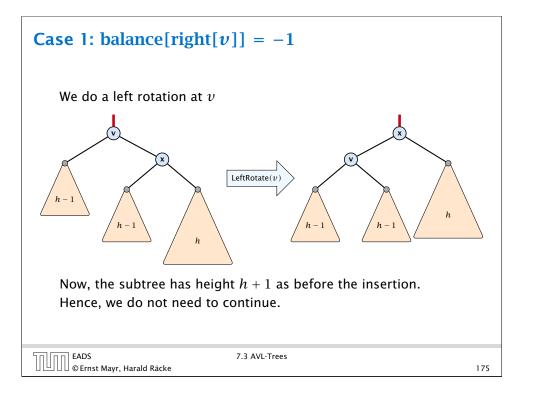
EAUS © Ernst Mayr, Harald Räcke

AVL-trees: Insert



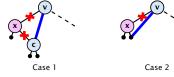
AVL-trees: Insert We have the following situation: The right sub-tree of v has increased its height which results in a balance of -2 at v. Before the insertion the height of T_v was h + 1.

7.3 AVL-Trees



AVL-trees: Delete

- Delete like in a binary search tree.
- Let v denote the parent of the node that has been spliced out.
- The balance-constraint may be violated at v, or at ancestors of v, as a sub-tree of a child of v has reduced its height.
- Initially, the node c—the new root in the sub-tree that has changed—is either a dummy leaf or a node with two dummy leafs as children.

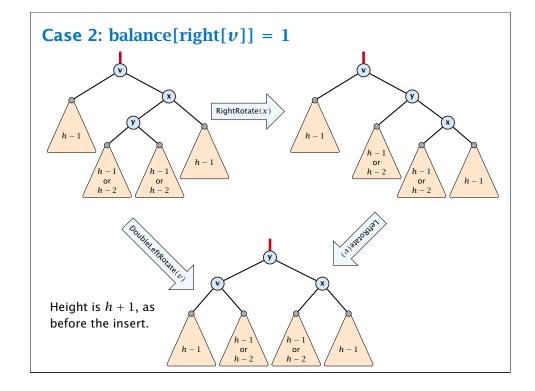


In both cases bal[c] = 0.

• Call AVL-fix-up-delete(v) to restore the balance-condition.

5000	EADS © Ernst Mayr, Harald Räcke
	© Ernst Mayr, Harald Räcke

7.3 AVL-Trees



AVL-trees: Delete

Invariant at the beginning AVL-fix-up-delete(v):

- 1. The balance constraints holds at all descendants of v.
- **2.** A node has been deleted from T_c , where c is either the right or left child of v.
- **3.** T_c has decreased its height by one.
- **4.** The balance at the node c fulfills balance[c] = 0. This holds because if the balance of c is in $\{-1, 1\}$, then T_c did not change its height, and the whole procedure would have been aborted in the previous step.

AVL-trees: Delete

Algorithm 13 AVL-fix-up-delete(v)

- 1: **if** balance[v] $\in \{-2, 2\}$ **then** DoRotationDelete(v);
- 2: **if** balance[v] $\in \{-1, 1\}$ **return**;
- 3: AVL-fix-up-delete(parent[v]);

We will show that the above procedure is correct. However, for the case of a delete there may be a logarithmic number of rotations.

50 00	EADS
	EADS © Ernst Mayr, Harald Räcke

7.3 AVL-Trees

179

 Π

EADS

EAUS © Ernst Mayr, Harald Räcke

AVL-trees: Delete

It is clear that the invariant for the fix-up routine hold as long as no rotations have been done.

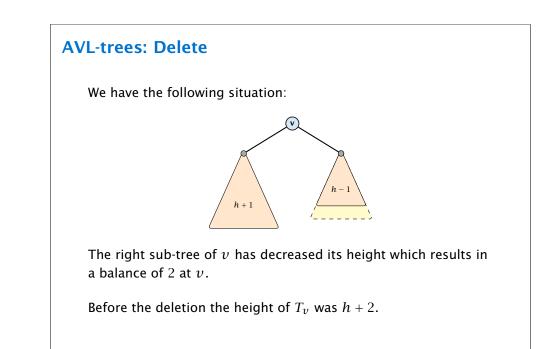
We show that after doing a rotation at v:

- \triangleright v fulfills the balance condition.
- \blacktriangleright All children of v still fulfill the balance condition.
- If now balance $[v] \in \{-1, 1\}$ we can stop as the height of T_v is the same as before the deletion.

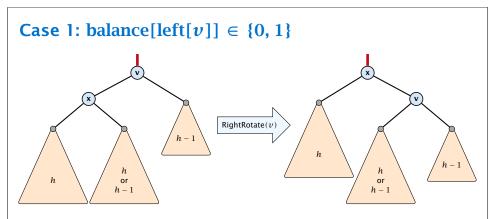
We only look at the case where the deleted node was in the right sub-tree of v. The other case is symmetric.

AVL-trees: Delete

Algori	ithm 14 DoRotationDelete(v)	
1: if k	valance[v] = -2 then // deletion in left sub-tree	
2:	if balance[right[v]] $\in \{0, -1\}$ then	
3:	LeftRotate(v);	
4:	else	
5:	DoubleLeftRotate(v);	
6: els	e // deletion in right sub-tree	
7:	if balance[left[v]] = {0,1} then	
8:	RightRotate(v);	
9:	else	
10:	DoubleRightRotate(v);	
and	that the case distinction on the second level $(bal[right[v]])$ bal[left[v]]) is not done w.r.t. the child c for which the sub- T_c has changed. This is different to AVL-fix-up-insert.	
S	7.3 AVL-Trees	
rnst Mayr, Ha	irald Räcke	180

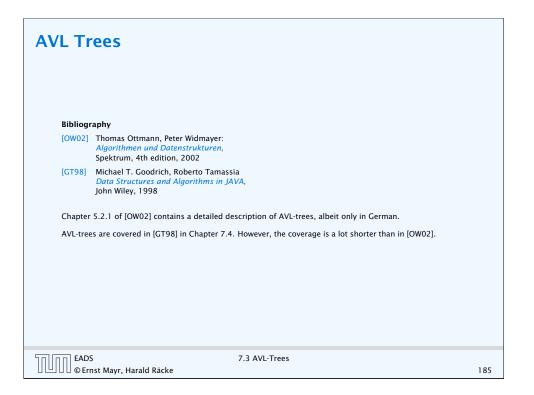


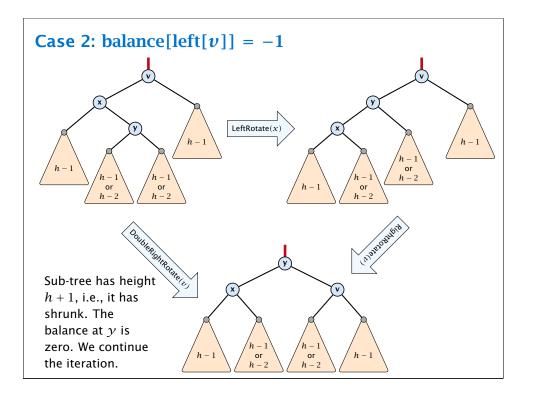
181



If the middle subtree has height h the whole tree has height h + 2 as before the deletion. The iteration stops as the balance at the root is non-zero.

If the middle subtree has height h - 1 the whole tree has decreased its height from h + 2 to h + 1. We do continue the fix-up procedure as the balance at the root is zero.





7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

- Insert(x): insert element x.
- **Search**(*k*): search for element with key *k*.
- **Delete**(*x*): delete element referenced by pointer *x*.
- Find-by-rank(ℓ): return the ℓ-th element; return "error" if the data-structure contains less than ℓ elements.

Augment an existing data-structure instead of developing a new one.

7.4 Augmenting Data Structures

How to augment a data-structure

- 1. choose an underlying data-structure
- 2. determine additional information to be stored in the underlying structure
- 3. verify/show how the additional information can be maintained for the basic modifying operations on the underlying structure.

	• Of course, the above steps heavily depend
4. develop the new operations	on each other. For example it makes no

	i or course, the above steps heavily depend
perations	on each other. For example it makes no
	sense to choose additional information to
	be stored (Step 2), and later realize that
	either the information cannot be maintained
	efficiently (Step 3) or is not sufficient to
	support the new operations (Step 4).
	• However, the above outline is a good way to
	describe/document a new data-structure.

186

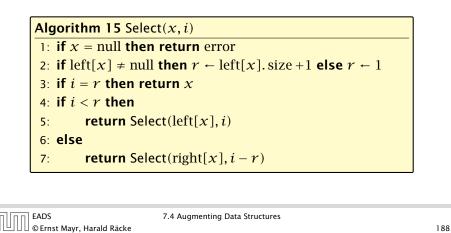
EADS 7.4 Augr © Ernst Mayr, Harald Räcke

7.4 Augmenting Data Structures

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

4. How does find-by-rank work? Find-by-rank(k) ≔ Select(root, k) with

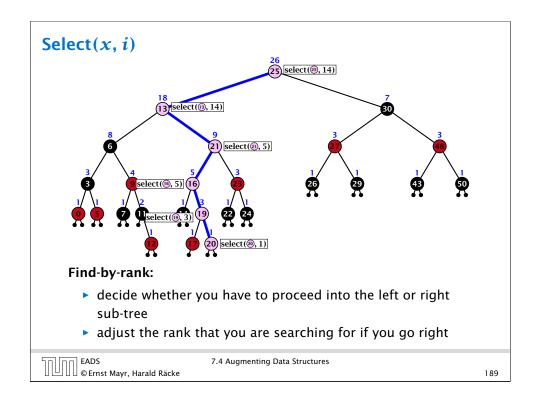


7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

- 1. We choose a red-black tree as the underlying data-structure.
- **2.** We store in each node v the size of the sub-tree rooted at v.
- 3. We need to be able to update the size-field in each node without asymptotically affecting the running time of insert, delete, and search. We come back to this step later...

רח (הה) EADS	7.4 Augmenting Data Structures	
UUUC © Ernst Mayr, Harald Räcke		187



7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

3. How do we maintain information?

Search(*k*): Nothing to do.

Insert(x): When going down the search path increase the size field for each visited node. Maintain the size field during rotations.

Delete(x): Directly after splicing out a node traverse the path from the spliced out node upwards, and decrease the size counter on every node on this path. Maintain the size field during rotations.

החוחר	EADS ©Ernst Mayr, Harald Räcke	7.4 Augmenting Da
	© Ernst Mayr, Harald Räcke	

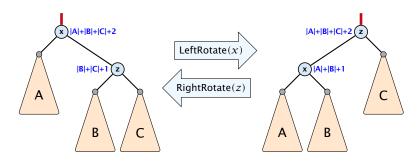
ata Structures

190

Augme	nting Data Structures	
Bibliogra	phy	
[CLRS90]	Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to Algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009	
See Chapt	ter 14 of [CLRS90].	
EADS © Erns	7.4 Augmenting Data Structures it Mayr, Harald Räcke	192

Rotations

The only operation during the fix-up procedure that alters the tree and requires an update of the size-field:



The nodes x and z are the only nodes changing their size-fields.

The new size-fields can be computed locally from the size-fields of the children.

EADS 7.4 Augmenting Data Structures © Ernst Mayr, Harald Räcke 191

7.5 (*a*, *b*)-trees

Definition 17

For $b \ge 2a - 1$ an (a, b)-tree is a search tree with the following properties

- 1. all leaves have the same distance to the root
- 2. every internal non-root vertex v has at least a and at most b children
- 3. the root has degree at least 2 if the tree is non-empty
- 4. the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

7.5 (*a*, *b*)-trees

Each internal node v with d(v) children stores d - 1 keys $k_1, \ldots, k_d - 1$. The *i*-th subtree of v fulfills

 $k_{i-1} < \text{key in } i\text{-th sub-tree } \le k_i$,

```
where we use k_0 = -\infty and k_d = \infty.
```

EADS © Ernst Mayr, Harald Räcke 7.5 (a, b)-trees

193

7.5 (*a*, *b*)-trees

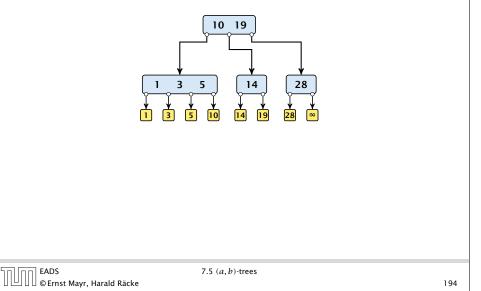
Variants

- The dummy leaf element may not exist; it only makes implementation more convenient.
- Variants in which b = 2a are commonly referred to as *B*-trees.
- A *B*-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A B⁺ tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- A B* tree requires that a node is at least 2/3-full as opposed to 1/2-full (the requirement of a B-tree).

195

7.5 (*a*, *b*)-trees

Example 18



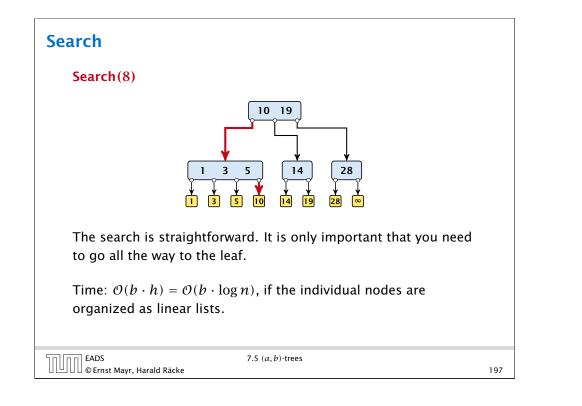
Lemma 19

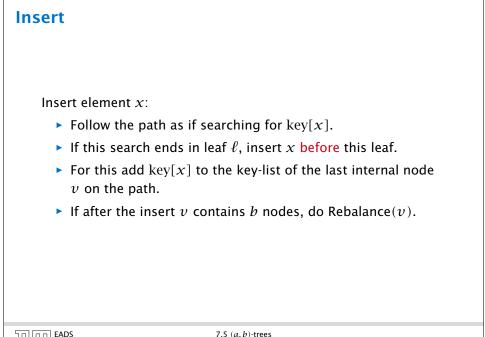
Let T be an (a, b)-tree for n > 0 elements (i.e., n + 1 leaf nodes) and height h (number of edges from root to a leaf vertex). Then

- 1. $2a^{h-1} \le n+1 \le b^h$
- **2.** $\log_b(n+1) \le h \le 1 + \log_a(\frac{n+1}{2})$

Proof.

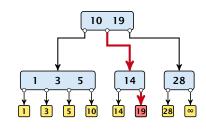
- If n > 0 the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least 2a^{h-1}.
- Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^h.





Search

Search(19)



The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $\mathcal{O}(b \cdot h) = \mathcal{O}(b \cdot \log n)$, if the individual nodes are organized as linear lists.

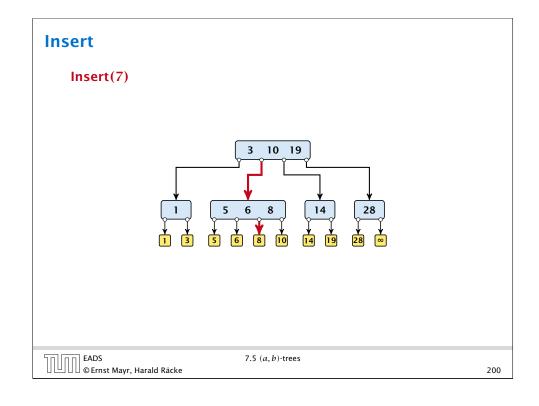
EADS © Ernst Mayr, Harald Räcke	7.5 (<i>a</i> , <i>b</i>)-tree
🛛 🕒 🛛 🖉 © Ernst Mayr, Harald Räcke	

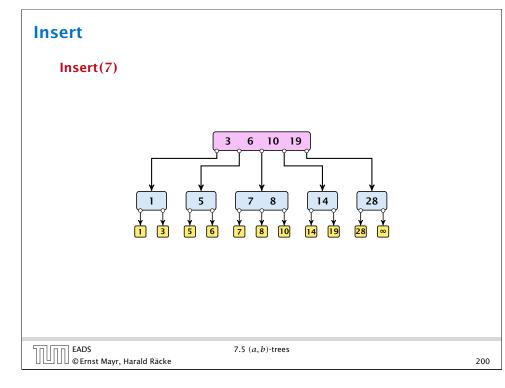
Insert

Rebalance(v):

EADS

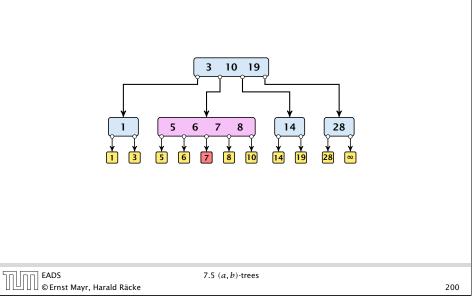
- Let k_i , i = 1, ..., b denote the keys stored in v.
- Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- Create two nodes v_1 , and v_2 . v_1 gets all keys k_1, \ldots, k_{i-1} and v_2 gets keys k_{i+1}, \ldots, k_h .
- Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \ge a$ since $b \ge 2a - 1$.
- They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \le b$ (since $b \ge 2$).
- The key k_i is promoted to the parent of v. The current pointer to v is altered to point to v_1 , and a new pointer (to the right of k_i) in the parent is added to point to v_2 .
- Then, re-balance the parent.

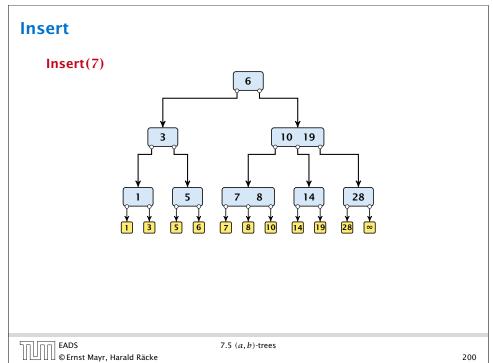




Insert

Insert(7)





Delete

Delete element *x* (pointer to leaf vertex):

- Let v denote the parent of x. If key[x] is contained in v, remove the key from v, and delete the leaf vertex.
- Otherwise delete the key of the predecessor of x from v; delete the leaf vertex; and replace the occurrence of key[x] in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).
- ► If now the number of keys in v is below a 1 perform Rebalance'(v).

EADS ©Ernst Mayr, Harald Räcke	7.5 (<i>a</i> , <i>b</i>)-trees

Delete		
	Animation for deleting in an (<i>a, b</i>)-tree is only available in the lecture version of the slides.	
EADS © Ernst Mayr, H	7.5 (<i>a</i> , <i>b</i>)-trees Iarald Räcke	203

Delete

Rebalance'(v):

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- The merged node contains at most (a − 2) + (a − 1) + 1 keys, and has therefore at most 2a − 1 ≤ b successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

202

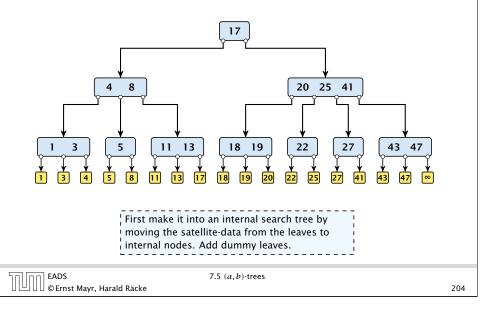
50 00	EADS © Ernst Mayr, Harald Räcke
	© Ernst Mayr, Harald Räcke

201

7.5 (*a*, *b*)-trees

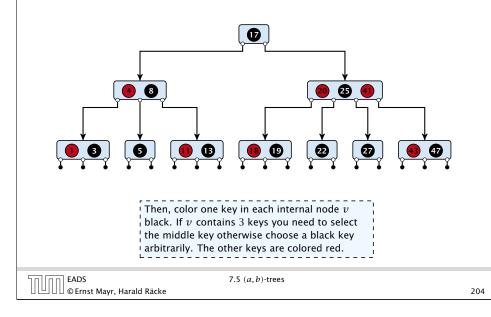
(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2, 4)-trees:



(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2, 4)-trees:



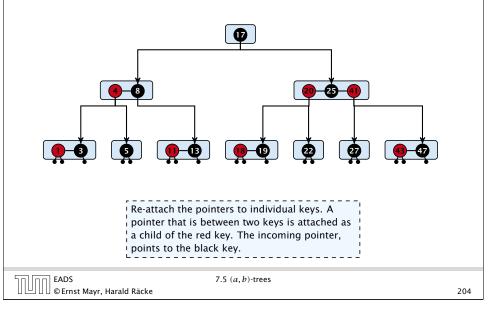


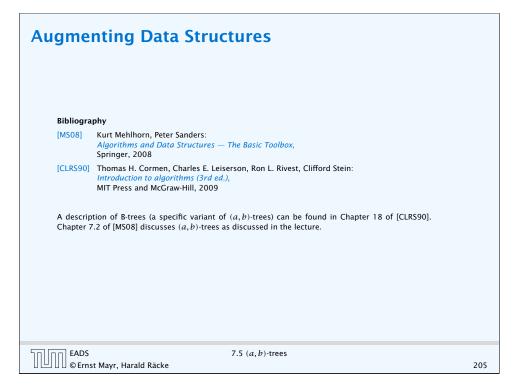
50 00	FADS		
	EADS © Ernst Mayr,	Harald	Räcke

204

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2, 4)-trees:





7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?
time for search Θ(n)
time for insert Θ(n) (dominated by searching the item)
time for delete Θ(1) if we are given a handle to the object, otw. Θ(n)

EADS © Ernst Mayr, Harald Räcke 7.6 Skip Lists

7.6 Skip Lists

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Search(x) (k + 1 lists L_0, \ldots, L_k)

- Find the largest item in list L_k that is smaller than x. At most |L_k| + 2 steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left[\frac{|L_{k-1}|}{|L_{k}|+1}\right] + 2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left[\frac{|L_{k-2}|}{|L_{k-1}|+1}\right] + 2$ steps.
- ▶ ...

• At most
$$|L_k| + \sum_{i=1}^k \frac{L_{i-1}}{L_i} + 3(k+1)$$
 steps.

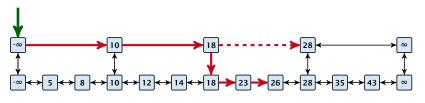
החוחר	EADS © Ernst Mayr, Harald	
	© Ernst Mayr, Harald	Räcke

7.6 Skip Lists

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:



Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + \frac{|L_0|}{|L_1|}$ (ignoring additive constants)

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.

EADS © Ernst Mayr, Harald Räcke	7.6 Skip Lists	
🛛 💾 🛛 🖉 Ernst Mayr, Harald Räcke		206

7.6 Skip Lists

205

207

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

Worst case running time is: $\mathcal{O}(r^{-k}n + kr)$. Choose $r = n^{\frac{1}{k+1}}$. Then

$$r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}$$
$$= n^{1-\frac{k}{k+1}} + kn^{\frac{1}{k+1}}$$
$$= (k+1)n^{\frac{1}{k+1}} .$$

Choosing $k = \Theta(\log n)$ gives a logarithmic running time.

EADS © Ernst Mayr, Harald Räcke 7.6 Skip Lists

7.6 Skip Lists

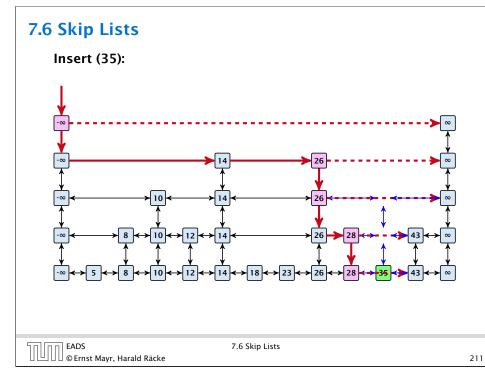
How to do insert and delete?

If we want that in L_i we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

Use randomization instead!

EADS © Ernst Mayr, Harald Räcke

7.6 Skip Lists



7.6 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- ► Flip a coin until it shows head, and record the number t ∈ {1,2,...} of trials needed.
- Insert x into lists L_0, \ldots, L_{t-1} .

Delete:

- > You get all predecessors via backward pointers.
- Delete *x* in all lists it actually appears in.

The time for both operations is dominated by the search time.

החה	EADS © Ernst Mayr, Harald	
	© Ernst Mayr, Harald	Räcke

5

209

```
7.6 Skip Lists
```

210

High Probability

Definition 20 (High Probability)

We say a **randomized** algorithm has running time $O(\log n)$ with high probability if for any constant α the running time is at most $O(\log n)$ with probability at least $1 - \frac{1}{n^{\alpha}}$.

Here the \mathcal{O} -notation hides a constant that may depend on α .

EADS © Ernst Mayr, Harald Räcke

High Probability

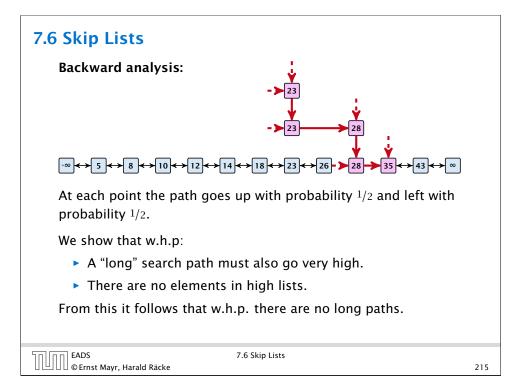
Suppose there are a polynomially many events $E_1, E_2, ..., E_\ell$, $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the *i*-th search in a skip list takes time at most $O(\log n)$).

Then the probability that all E_i hold is at least

 $\Pr[E_1 \wedge \dots \wedge E_{\ell}] = 1 - \Pr[\bar{E}_1 \vee \dots \vee \bar{E}_{\ell}]$ $\geq 1 - n^c \cdot n^{-\alpha}$ $= 1 - n^{c-\alpha} .$

This means $\Pr[E_1 \land \cdots \land E_\ell]$ holds with high probability.

7.6 Skip Lists	213
	7.6 Skip Lists

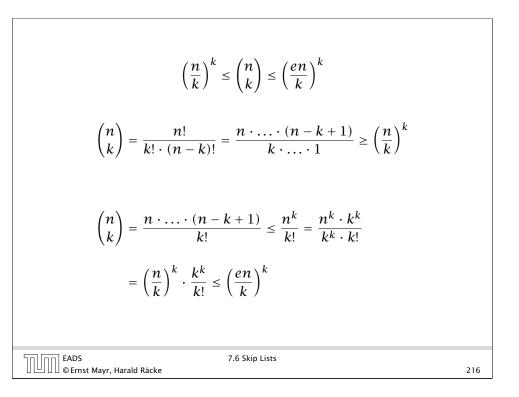


7.6 Skip Lists

Lemma 21

A search (and, hence, also insert and delete) in a skip list with n elements takes time O(logn) with high probability (w. h. p.).

	7.6 Skip Lists	
🛛 🕒 🛛 🖉 © Ernst Mayr, Harald Räcke		214



7.6 Skip Lists

Let $E_{z,k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_k .

In particular, this means that during the construction in the backward analysis we see at most k heads (i.e., coin flips that tell you to go up) in z trials.

5000	EADS
	EADS © Ernst Mayr, Harald Räcke

7.6 Skip Lists

217

7.6 Skip Lists

So far we fixed $k = \gamma \log n$, $\gamma \ge 1$, and $z = 7\alpha \gamma \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

 $\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$.

For the search to take at least $z = 7\alpha \gamma \log n$ steps either the event $E_{z,k}$ or the even A_{k+1} must hold. Hence,

 $\begin{aligned} &\Pr[\text{search requires } z \text{ steps}] \leq \Pr[E_{z,k}] + \Pr[A_{k+1}] \\ &\leq n^{-\alpha} + n^{-(\gamma-1)} \end{aligned}$

This means, the search requires at most *z* steps, w. h. p.

7.6 Skip Lists

 $\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq \left(\frac{2ez}{2^{\beta}k}\right)^{k} \cdot n^{-\alpha}$$
$$\leq \left(\frac{2e(\beta + \alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}$$

now choosing
$$\beta = 6\alpha$$
 gives

 \leq

$$\left(\frac{42\alpha}{64^{\alpha}}\right)^k n^{-\alpha} \le n^{-\alpha}$$

for $\alpha \ge 1$.

	7.6 Skip Lists	
© Ernst Mayr, Harald Räcke		218

7.7 Hashing

Dictionary:

- Sinsert(x): Insert an element x.
- ► *S*.delete(*x*): Delete the element pointed to by *x*.
- S.search(k): Return a pointer to an element *e* with key[*e*] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

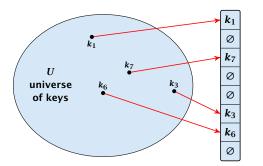
Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the given key. The goal is to have constant search time.

EADS © Ernst Mayr, Harald Räcke	7.7 Hashing	
🛛 🕒 🛛 🖉 © Ernst Mayr, Harald Räcke		220

Direct Addressing

Ideally the hash function maps all keys to different memory locations.



This special case is known as Direct Addressing. It is usually very unrealistic as the universe of keys typically is quite large, and in particular larger than the available memory.

הם הי	EADS © Ernst Mayr, Harald	
	© Ernst Mayr, Harald	Räcke

222

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \le |U|$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h: U \rightarrow [0, \dots, n-1]$.

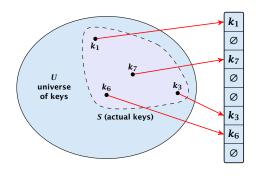
The hash-function *h* should fulfill:

- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.

EADS © Ernst Mayr, Harald Räcke	7.7 Hashing
🛛 🕒 🛛 🖉 Ernst Mayr, Harald Räcke	

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no delete). Then we may want to design a simple hash-function that maps all these keys to different memory locations.



Such a hash function h is called a perfect hash function for set S.

EADS © Ernst Mayr, Harald Räcke

Collisions

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k_1, k_2 from the set *S* that map to the same memory location (i.e., $h(k_1) = h(k_2)$). This is called a collision.

EADS © Ernst Mayr, Harald Räcke 7.7 Hashing

224

Collisions

Proof.

Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$
$$\leq \prod_{j=0}^{m-1} e^{-j/n} = e^{-\sum_{j=0}^{m-1} \frac{j}{n}} = e^{-\frac{m(m-1)}{2n}}$$

Here the first equality follows since the ℓ -th element that is hashed has a probability of $\frac{n-\ell+1}{n}$ to not generate a collision under the condition that the previous elements did not induce collisions.

EADS 🛛 🗌 😨 Ernst Mayr, Harald Räcke

226

Collisions

Typically, collisions do not appear once the size of the set *S* of actual keys gets close to *n*, but already when $|S| \ge \omega(\sqrt{n})$.

Lemma 22

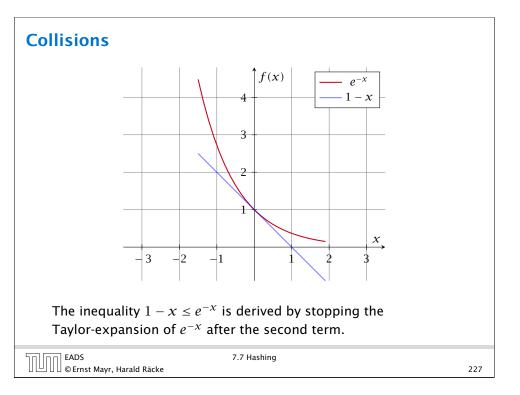
The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

 $1 - e^{-\frac{m(m-1)}{2n}} \approx 1 - e^{-\frac{m^2}{2n}}$.

Uniform hashing:

Choose a hash function uniformly at random from all functions $f: U \rightarrow [0, ..., n-1].$

	7.7 Hashing	
UUUC © Ernst Mayr, Harald Räcke		225



Resolving Collisions

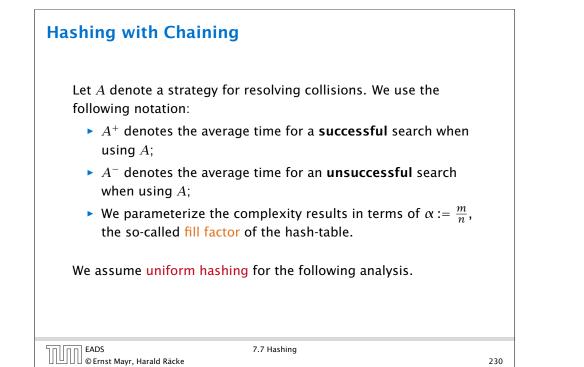
The methods for dealing with collisions can be classified into the two main types

- open addressing, aka. closed hashing
- hashing with chaining, aka. closed addressing, open hashing.

There are applications e.g. computer chess where you do not resolve collisions at all.

EADS © Ernst Mayr, Harald Räcke 7.7 Hashing

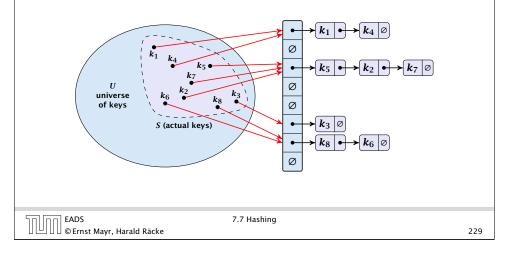
228



Hashing with Chaining

Arrange elements that map to the same position in a linear list.

- Access: compute h(x) and search list for key[x].
- Insert: insert at the front of the list.



Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is $\alpha = \frac{m}{n}$. Hence, if *A* is the collision resolving strategy "Hashing with Chaining" we have

$$A^- = 1 + \alpha \; .$$

Hashing with Chaining

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_ℓ denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the indicator variable for the event that k_i and k_j hash to the same position. Clearly, $\Pr[X_{ij} = 1] = 1/n$ for uniform hashing.

The expected successful search cost is

keys before k_i $\mathbf{E}\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right]$

EADS © Ernst Mayr, Harald Räcke 7.7 Hashing

Hashing with Chaining

Disadvantages:

- pointers increase memory requirements
- pointers may lead to bad cache efficiency

Advantages:

- no à priori limit on the number of elements
- deletion can be implemented efficiently
- by using balanced trees instead of linked list one can also obtain worst-case guarantees.

Hashing with Chaining

$$\begin{split} \mathbf{E}\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] &= \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\mathbf{E}\left[X_{ij}\right]\right)\\ &= \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)\\ &= 1+\frac{1}{mn}\sum_{i=1}^{m}(m-i)\\ &= 1+\frac{1}{mn}\left(m^{2}-\frac{m(m+1)}{2}\right)\\ &= 1+\frac{m-1}{2n} = 1+\frac{\alpha}{2}-\frac{\alpha}{2m} \end{split}$$

Hence, the expected cost for a successful search is $A^{+} \leq 1+\frac{\alpha}{2}$.

	7.7 Hashing	
🛛 🕒 🛛 🖉 Ernst Mayr, Harald Räcke		233

Open Addressing

EADS

© Ernst Mayr, Harald Räcke

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be examined in the *j*-th step. The values $h(k, 0), \ldots, h(k, n - 1)$ must form a permutation of $0, \ldots, n - 1$.

Search(k): Try position h(k, 0); if it is empty your search fails; otw. continue with h(k, 1), h(k, 2),

Insert(x): Search until you find an empty slot; insert your element there. If your search reaches h(k, n - 1), and this slot is non-empty then your table is full.

Open Addressing

Choices for h(k, j):

- Linear probing:
 h(k,i) = h(k) + i mod n
 (sometimes: h(k,i) = h(k) + ci mod n).
- Quadratic probing: $h(k,i) = h(k) + c_1i + c_2i^2 \mod n.$
- Double hashing: $h(k, i) = h_1(k) + ih_2(k) \mod n.$

For quadratic probing and double hashing one has to ensure that the search covers all positions in the table (i.e., for double hashing $h_2(k)$ must be relatively prime to n (teilerfremd); for quadratic probing c_1 and c_2 have to be chosen carefully).

EADS © Ernst Mayr. Harald Räcke	7.7 Hashing
□□□□□□ © Ernst Mayr, Harald Räcke	

Quadratic Probing

- Not as cache-efficient as Linear Probing.
- Secondary clustering: caused by the fact that all keys mapped to the same position have the same probe sequence.

Lemma 24

Let Q be the method of quadratic probing for resolving collisions:

$$Q^+ \approx 1 + \ln\left(\frac{1}{1-\alpha}\right) - \frac{\alpha}{2}$$

 $Q^- \approx \frac{1}{1-\alpha} + \ln\left(\frac{1}{1-\alpha}\right) - \alpha$

החוחר	EADS © Ernst Mayr, Harald	
	© Ernst Mayr, Harald	Räcke

238

236

Linear Probing

- Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.
- Disadvantage: Primary clustering. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Lemma 23

Let *L* be the method of linear probing for resolving collisions:

$$L^+ \approx \frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right)$$

$$L^{-} \approx \frac{1}{2} \left(1 + \frac{1}{(1-\alpha)^2} \right)$$

EADS © Ernst Mayr, Harald Räcke 7.7 Hashing

237

Double Hashing

> Any probe into the hash-table usually creates a cache-miss.

Lemma 25

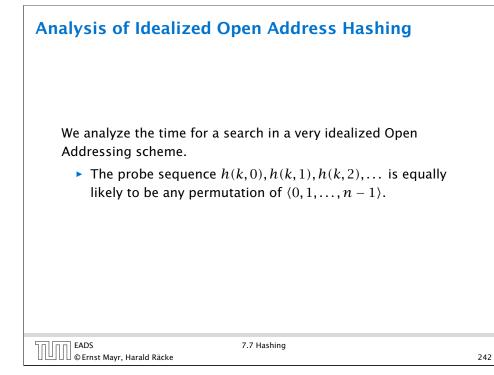
Let A be the method of double hashing for resolving collisions:

$$D^+ pprox rac{1}{lpha} \ln \Big(rac{1}{1-lpha} \ D^- pprox rac{1}{1-lpha}$$

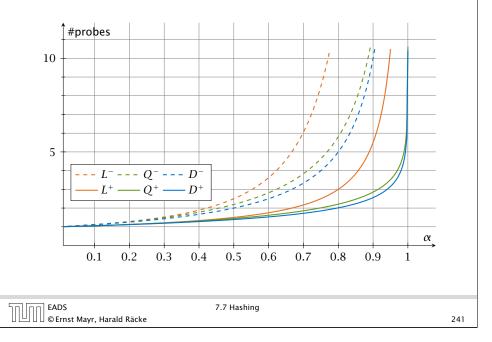
EADS © Ernst Mayr, Harald Räcke 7.7 Hashing

Open Addressing

Some values:



Open Addressing



Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_i denote the event that the *i*-th probe occurs and is to a non-empty slot.

$$\Pr[A_1 \cap A_2 \cap \dots \cap A_{i-1}]$$

$$= \Pr[A_1] \cdot \Pr[A_2 \mid A_1] \cdot \Pr[A_3 \mid A_1 \cap A_2] \cdot \dots \cdot \Pr[A_{i-1} \mid A_1 \cap \dots \cap A_{i-2}]$$

$$\Pr[X \ge i] = \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \dots \cdot \frac{m-i+2}{n-i+2}$$

$$\leq \left(\frac{m}{n}\right)^{i-1} = \alpha^{i-1} .$$

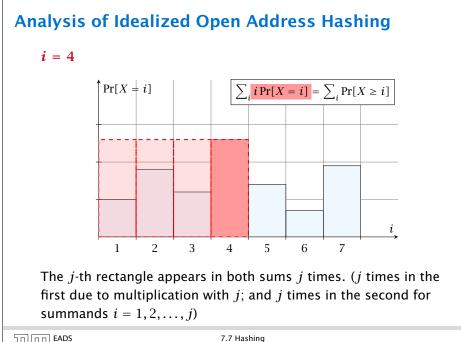
EADS © Ernst Mayr, Harald Räcke 7.7 Hashing

Analysis of Idealized Open Address Hashing

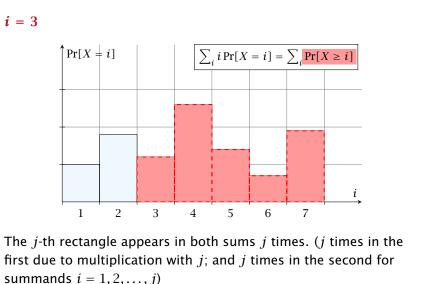
$$\mathbb{E}[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i} = \frac{1}{1-\alpha}$$

$$\frac{1}{1-\alpha} = 1 + \alpha + \alpha^2 + \alpha^3 + \dots$$

EADS © Ernst Mayr, Harald Räcke	7.7 Hashing	



Analysis of Idealized Open Address Hashing

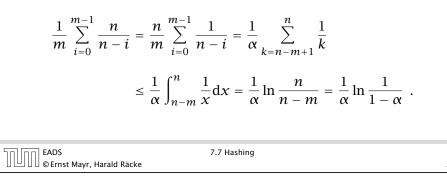


EADS	7.7 Hashing	
🛛 🕒 🖓 🖉 Ernst Mayr, Harald Räcke		245

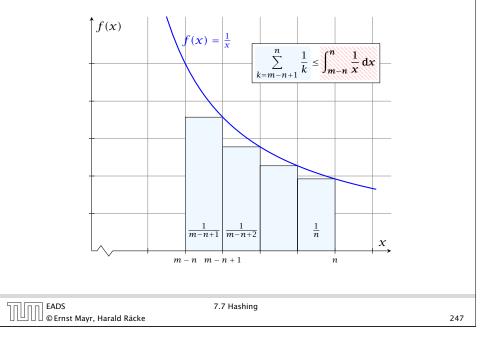
Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let *k* be the *i* + 1-st element. The expected time for a search for *k* is at most $\frac{1}{1-i/n} = \frac{n}{n-i}$.



Analysis of Idealized Open Address Hashing



Deletions in Hashtables

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.
 - During a search a deleted-marker must not be used to terminate the probe sequence.
- The table could fill up with deleted-markers leading to bad performance.
- ► If a table contains many deleted-markers (linear fraction of the keys) one can rehash the whole table and amortize the cost for this rehash against the cost for the deletions.

EADS U]]] © Ernst Mayr, Harald Räcke

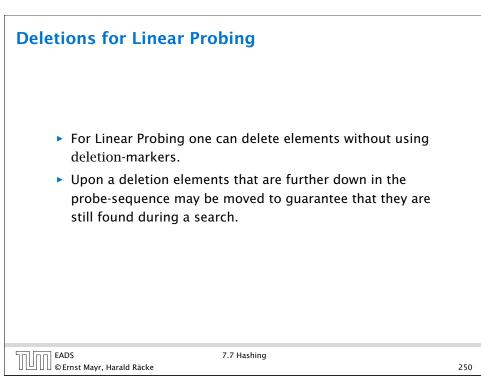
249

Deletions in Hashtables

How do we delete in a hash-table?

- For hashing with chaining this is not a problem. Simply search for the key, and delete the item in the corresponding list.
- For open addressing this is difficult.

רח (הה) EADS	7.7 Hashing	
□□□□©Ernst Mayr, Harald Räcke		248



Deletions for Linear Probing		
	Algorithm 16 delete (n)	
	$\frac{\text{Algorithm Fourier}(p)}{1: T[n] \leftarrow \text{null}}$	
	$2: n \leftarrow \operatorname{Succ}(n)$	
	3: while $T[p] \neq$ null do	
	4: $v \leftarrow T[p]$	
	5: $T[p] \leftarrow \text{null}$	
	6: $p \leftarrow \operatorname{succ}(p)$	
	Algorithm 16 delete(p)1: $T[p] \leftarrow$ null2: $p \leftarrow$ succ(p)3: while $T[p] \neq$ null do4: $y \leftarrow T[p]$ 5: $T[p] \leftarrow$ null6: $p \leftarrow$ succ(p)7: insert(y)	

 \boldsymbol{p} is the index into the table-cell that contains the object to be deleted.

Pointers into the hash-table become invalid.

EADS			
© Ernst	Mayr,	Harald	Räcke

7.7 Hashing

251

Universal Hashing

Definition 26

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called universal if for all $u_1, u_2 \in U$ with $u_1 \neq u_2$

$$\Pr[h(u_1) = h(u_2)] \le \frac{1}{n}$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

Note that this means that the probability of a collision between two arbitrary elements is at most $\frac{1}{n}$.

Universal Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f: U \rightarrow [0, ..., n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U| \log n$ bits.

Universal hashing tries to define a set \mathcal{H} of functions that is much smaller but still leads to good average case behaviour when selecting a hash-function uniformly at random from \mathcal{H} .

EADS © Ernst Mayr, Harald Räcke 7.7 Hashing

252

Universal Hashing

Definition 27

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called 2-independent (pairwise independent) if the following two conditions hold

- ▶ For any key $u \in U$, and $t \in \{0, ..., n-1\}$ $\Pr[h(u) = t] = \frac{1}{n}$, i.e., a key is distributed uniformly within the hash-table.
- For all u₁, u₂ ∈ U with u₁ ≠ u₂, and for any two hash-positions t₁, t₂:

$$\Pr[h(u_1) = t_1 \wedge h(u_2) = t_2] \le \frac{1}{n^2} .$$

This requirement clearly implies a universal hash-function.

EADS © Ernst Mayr, Harald Räcke

Universal Hashing

Definition 28

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called *k*-independent if for any choice of $\ell \leq k$ distinct keys $u_1, \ldots, u_\ell \in U$, and for any set of ℓ not necessarily distinct hash-positions t_1, \ldots, t_ℓ :

 $\Pr[h(u_1) = t_1 \wedge \cdots \wedge h(u_\ell) = t_\ell] \leq \frac{1}{n^\ell} ,$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

EADS © Ernst Mayr, Harald Räcke 7.7 Hashing

Universal Hashing

Let $U := \{0, ..., p - 1\}$ for a prime p. Let $\mathbb{Z}_p := \{0, ..., p - 1\}$, and let $\mathbb{Z}_p^* := \{1, ..., p - 1\}$ denote the set of invertible elements in \mathbb{Z}_p .

Define

 $h_{a,b}(x) := (ax + b \mod p) \mod n$

Lemma 30

The class

EADS

🛛 🖓 © Ernst Mayr, Harald Räcke

 $\mathcal{H} = \{h_{a,b} \mid a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p\}$

is a universal class of hash-functions from U to $\{0, ..., n-1\}$.

7.7 Hashing

Universal Hashing

Definition 29

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called (μ, k) -independent if for any choice of $\ell \leq k$ distinct keys $u_1, \ldots, u_\ell \in U$, and for any set of ℓ not necessarily distinct hash-positions t_1, \ldots, t_ℓ :

$$\Pr[h(u_1) = t_1 \wedge \cdots \wedge h(u_\ell) = t_\ell] \leq \frac{\mu}{n^\ell} ,$$

7.7 Hashing

where the probability is w. r. t. the choice of a random hash-function from set \mathcal{H} .

EADS © Ernst Mayr, Harald Räcke

Universal Hashing

Proof.

255

257

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

 $\bullet ax + b \not\equiv ay + b \pmod{p}$

If $x \neq y$ then $(x - y) \not\equiv 0 \pmod{p}$.

Multiplying with $a \not\equiv 0 \pmod{p}$ gives

 $a(x-y) \not\equiv 0 \pmod{p}$

where we use that \mathbb{Z}_p is a field (Körper) and, hence, has no zero divisors (nullteilerfrei).

Universal Hashing

The hash-function does not generate collisions before the (mod *n*)-operation. Furthermore, every choice (*a*, *b*) is mapped to a different pair (*t_x*, *t_y*) with *t_x* := *ax* + *b* and *t_y* := *ay* + *b*.

This holds because we can compute *a* and *b* when given t_x and t_y :

$t_x \equiv ax + b$	$(\mod p)$
$t_{\mathcal{Y}} \equiv a \mathcal{Y} + b$	$(\mod p)$
$t_x - t_y \equiv a(x - y)$	$(\mod p)$
$t_{\mathcal{Y}} \equiv a\mathcal{Y} + b$	$(\mod p)$
1	
$a \equiv (t_x - t_y)(x - y)^{-1}$	$(\mod p)$
$b \equiv t_{\mathcal{Y}} - a_{\mathcal{Y}}$	\pmod{p}

Universal Hashing

As $t_{\gamma} \neq t_{\chi}$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 \le \frac{p}{n} + \frac{n-1}{n} - 1 \le \frac{p-1}{n}$$

7.7 Hashing

possibilities for choosing $t_{\mathcal{Y}}$ such that the final hash-value creates a collision.

This happens with probability at most $\frac{1}{n}$.

EADS © Ernst Mayr, Harald Räcke

261

Universal Hashing

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \neq 0$) and pairs (t_x, t_y) , $t_x \neq t_y$.

Therefore, we can view the first step (before the mod *n*-operation) as choosing a pair (t_x, t_y) , $t_x \neq t_y$ uniformly at random.

What happens when we do the mod n operation?

Fix a value t_x . There are p - 1 possible values for choosing t_y .

From the range 0, ..., p - 1 the values $t_x, t_x + n, t_x + 2n, ...$ map to t_x after the modulo-operation. These are at most $\lceil p/n \rceil$ values.

EADS 7.7 Hashing © Ernst Mayr, Harald Räcke

Universal Hashing

It is also possible to show that ${\mathcal H}$ is an (almost) pairwise independent class of hash-functions.

$$\frac{\left\lfloor \frac{p}{n} \right\rfloor^2}{p(p-1)} \leq \Pr_{t_x \neq t_y \in \mathbb{Z}_p^2} \left[\begin{array}{c} t_x \bmod n = h_1 \\ t_y \bmod n = h_2 \end{array} \right] \leq \frac{\left\lceil \frac{p}{n} \right\rceil^2}{p(p-1)}$$

Note that the middle is the probability that $h(x) = h_1$ and $h(y) = h_2$. The total number of choices for (t_x, t_y) is p(p-1). The number of choices for t_x (t_y) such that $t_x \mod n = h_1$ $(t_y \mod n = h_2)$ lies between $\lfloor \frac{p}{n} \rfloor$ and $\lceil \frac{p}{n} \rceil$.

EADS © Ernst Mayr, Harald Räcke

Universal Hashing

Definition 31 Let $d \in \mathbb{N}$; $q \ge (d + 1)n$ be a prime; and let $\bar{a} \in \{0, ..., q - 1\}^{d+1}$. Define for $x \in \{0, ..., q - 1\}$ $h_{\bar{a}}(x) := \left(\sum_{i=0}^{d} a_i x^i \mod q\right) \mod n$. Let $\mathcal{H}_n^d := \{h_{\bar{a}} \mid \bar{a} \in \{0, ..., q - 1\}^{d+1}\}$. The class \mathcal{H}_n^d is (e, d + 1)-independent. Note that in the previous case we had d = 1 and chose $a_d \neq 0$.

Universal Hashing

Fix $\ell \le d + 1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q - 1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let $A^{\ell} = \{h_{\tilde{a}} \in \mathcal{H} \mid h_{\tilde{a}}(x_i) = t_i \text{ for all } i \in \{1, \dots, \ell\}\}$ Then

 $h_{\tilde{a}} \in A^{\ell} \Leftrightarrow h_{\tilde{a}} = f_{\tilde{a}} \bmod n$ and

$$f_{\bar{a}}(x_i) \in \underbrace{\{t_i + \alpha \cdot n \mid \alpha \in \{0, \dots, \lceil \frac{q}{n} \rceil - 1\}\}}_{=:B_i}$$

In order to obtain the cardinality of A^{ℓ} we choose our polynomial by fixing d + 1 points. We first fix the values for inputs x_1, \ldots, x_{ℓ} . We have $|B_1| \cdot \ldots \cdot |B_{\ell}|$ possibilities to do this (so that $h_{\bar{a}}(x_i) = t_i$). A^{ℓ} denotes the set of hash-functions such that every x_i hits its pre-defined position t_i . B_i is the set of positions that $f_{\bar{a}}$ can hit so that $h_{\bar{a}}$ still hits t_i .

Universal Hashing

For the coefficients $\bar{a} \in \{0, ..., q-1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$f_{\tilde{a}}(x) = \left(\sum_{i=0}^{a} a_i x^i\right) \mod q$$

The polynomial is defined by d + 1 distinct points.

EADS © Ernst Mayr, Harald Räcke

263

7.7 Hashing

Universal Hashing Now, we choose $d - \ell + 1$ other inputs and choose their value arbitrarily. We have $q^{d-\ell+1}$ possibilities to do this. Therefore we have $|B_1| \cdot \ldots \cdot |B_\ell| \cdot q^{d-\ell+1} \leq \lceil \frac{q}{n} \rceil^\ell \cdot q^{d-\ell+1}$ possibilities to choose \bar{a} such that $h_{\bar{a}} \in A_\ell$.

EADS © Ernst Mayr, Harald Räcke

Universal Hashing

Therefore the probability of choosing $h_{\tilde{a}}$ from A_{ℓ} is only

$$\begin{split} \frac{\lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} &\leq \frac{(\frac{q+n}{n})^{\ell}}{q^{\ell}} \leq \left(\frac{q+n}{q}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \\ &\leq \left(1 + \frac{1}{\ell}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \leq \frac{e}{n^{\ell}} \end{split}$$

This shows that the \mathcal{H} is (e, d + 1)-universal.

The last step followed from $q \ge (d+1)n$, and $\ell \le d+1$.

EADS © Ernst Mayr, Harald Räcke

7.7 Hashing

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

 $\mathbf{E}[\texttt{\#Collisions}] = \binom{m}{2} \cdot \frac{1}{n} \ .$

If we choose $n = m^2$ the expected number of collisions is strictly less than $\frac{1}{2}$.

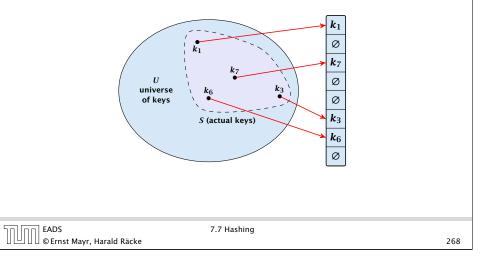
Can we get an upper bound on the probability of having collisions?

The probability of having 1 or more collisions can be at most $\frac{1}{2}$ as otherwise the expectation would be larger than $\frac{1}{2}$.

267

Perfect Hashing

Suppose that we **know** the set *S* of actual keys (no insert/no delete). Then we may want to design a **simple** hash-function that maps all these keys to different memory locations.



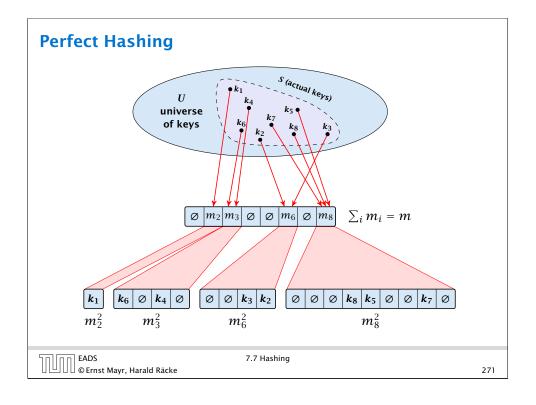
Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

Let m_j denote the number of items that are hashed to the *j*-th bucket. For each bucket we choose a second hash-function that maps the elements of the bucket into a table of size m_j^2 . The second function can be chosen such that all elements are mapped to different locations.



Perfect Hashing

We need only $\mathcal{O}(m)$ time to construct a hash-function *h* with $\sum_{i} m_{i}^{2} = O(4m)$, because with probability at least 1/2 a random function from a universal family will have this property.

Then we construct a hash-table h_i for every bucket. This takes expected time $\mathcal{O}(m_i)$ for every bucket. A random function h_i is collision-free with probability at least 1/2. We need $\mathcal{O}(m_i)$ to test this.

We only need that the hash-functions are chosen from a universal family!!!

Perfect Hashing

The total memory that is required by all hash-tables is $\mathcal{O}(\sum_{i} m_{i}^{2})$. Note that m_{j} is a random variable.

$$E\left[\sum_{j} m_{j}^{2}\right] = E\left[2\sum_{j} \binom{m_{j}}{2} + \sum_{j} m_{j}\right]$$
$$= 2E\left[\sum_{j} \binom{m_{j}}{2}\right] + E\left[\sum_{j} m_{j}\right]$$

The first expectation is simply the expected number of collisions, for the first level. Since we use universal hashing we have

$$=2\binom{m}{2}\frac{1}{m}+m=2m-1$$

EADS © Ernst Mayr, Harald Räcke

7.7 Hashing

Cuckoo Hashing

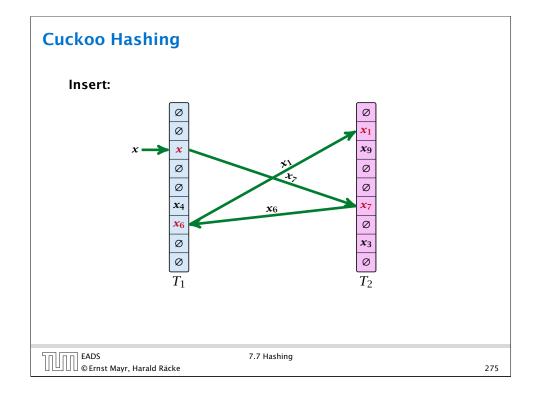
Goal:

nn EADS

© Ernst Mayr, Harald Räcke

Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

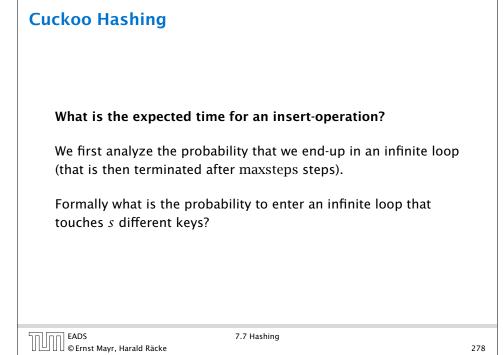
- ▶ Two hash-tables $T_1[0, \ldots, n-1]$ and $T_2[0, \ldots, n-1]$, with hash-functions h_1 , and h_2 .
- An object x is either stored at location $T_1[h_1(x)]$ or $T_2[h_2(x)].$
- A search clearly takes constant time if the above constraint is met.

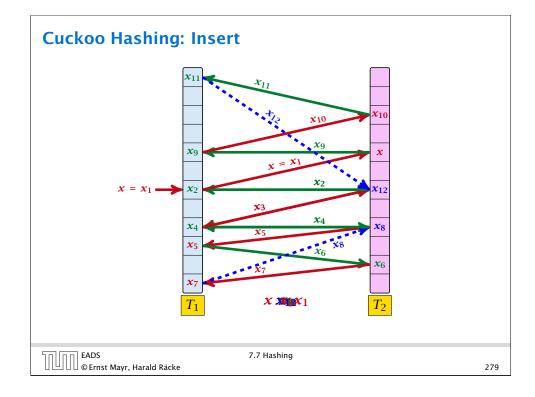


- We call one iteration through the while-loop a step of the algorithm.
- We call a sequence of iterations through the while-loop without the termination condition becoming true a phase of the algorithm.
- We say a phase is successful if it is not terminated by the maxstep-condition, but the while loop is left because x =null.

Cuckoo Hashing

Algorithm 17 Cuckoo-Insert(x)	
1: if $T_1[h_1(x)] = x \lor T_2[h_2(x)] = x$ then return	
2: steps ← 1	
3: while steps ≤ maxsteps do	
4: exchange x and $T_1[h_1(x)]$	
5: if <i>x</i> = null then return	
6: exchange x and $T_2[h_2(x)]$	
7: if x = null then return	
8: steps \leftarrow steps $+1$	
9: rehash() // change hash-functions; rehash everything	
10: Cuckoo-Insert(<i>x</i>)	
)
EADS 7.7 Hashing	
U 🕒 U U © Ernst Mayr, Harald Räcke	276



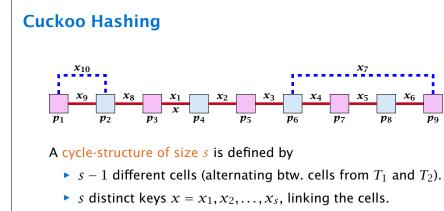


A cycle-structure is active if for every key x_{ℓ} (linking a cell p_i from T_1 and a cell p_i from T_2) we have

> and $h_2(x_\ell) = p_i$ $h_1(x_\ell) = p_i$

Observation:

If during a phase the insert-procedure runs into a cycle there must exist an active cycle structure of size $s \ge 3$.



- The leftmost cell is "linked forward" to some cell on the right.
- The rightmost cell is "linked backward" to a cell on the left.
- One link represents key x; this is where the counting starts.

רח EADS הח	7.7 Hashing	
🛛 🛄 🗍 🖉 Ernst Mayr, Harald Räcke		280

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size *s* correctly map into their T_1 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_1 is a (μ, s) -independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_2 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_2 is a (μ, s) -independent hash-function.

These events are independet.

EADS

© Ernst Mayr, Harald Räcke

הם הר	EADS © Ernst Mayr, Harald Räcke
	© Ernst Mayr, Harald Räcke

The probability that a given cycle-structure of size *s* is active is at most $\frac{\mu^2}{n^{2s}}$.

What is the probability that there exists an active cycle structure of size *s*?

EADS © Ernst Mayr, Harald Räcke 7.7 Hashing

283

285

Cuckoo Hashing

The probability that there exists an active cycle-structure is therefore at most

$$\begin{split} \sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} &= \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n}\right)^s \\ &\leq \frac{\mu^2}{m^2} \sum_{s=3}^{\infty} s^3 \left(\frac{1}{1+\epsilon}\right)^s \leq \mathcal{O}\left(\frac{1}{m^2}\right) \end{split}$$

Here we used the fact that $(1 + \epsilon)m \le n$.

Hence,

$$\Pr[\mathsf{cycle}] = \mathcal{O}\left(\frac{1}{m^2}\right)$$
.

50 00	EADS © Ernst Mayr, Harald Räcke
	© Ernst Mayr, Harald Räcke

7.7 Hashing

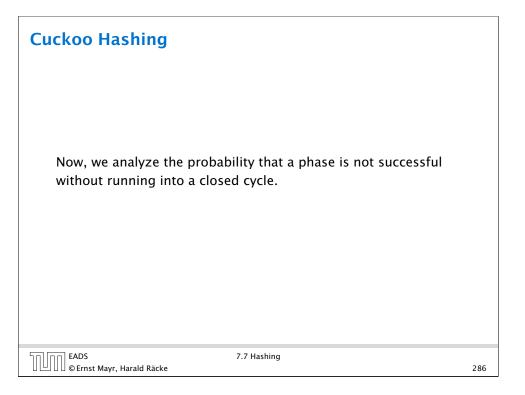
Cuckoo Hashing

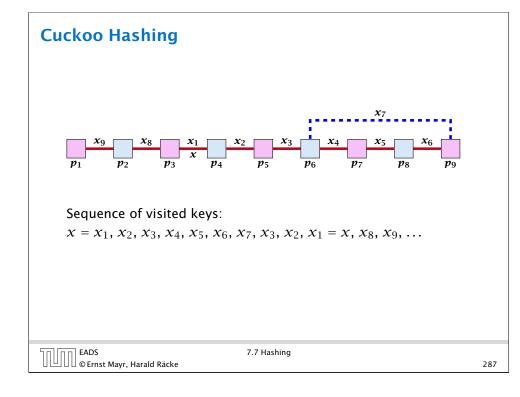
The number of cycle-structures of size s is at most

 $s^3 \cdot n^{s-1} \cdot m^{s-1}$.

- There are at most s² possibilities where to attach the forward and backward links.
- There are at most s possibilities to choose where to place key x.
- There are m^{s-1} possibilities to choose the keys apart from x.
- There are n^{s-1} possibilities to choose the cells.

EADS © Ernst Mayr, Harald Räcke	7.7 Hashing	
UUUC © Ernst Mayr, Harald Räcke		284





Taking $x_1 \rightarrow \cdots \rightarrow x_i$ twice, and $x_1 \rightarrow x_{i+1} \rightarrow \dots x_j$ once gives $2i + (j - i + 1) = i + j + 1 \ge p + 2$ keys. Hence, one of the sequences contains at least (p + 2)/3 keys.

Proof.

Let i be the number of keys (including x) that we see before the first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:

 $x = x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i \rightarrow x_r \rightarrow x_{r-1} \rightarrow \cdots \rightarrow x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$

As $r \le i - 1$ the length p of the sequence is

 $p=i+r+(j-i)\leq i+j-1 \ .$

Either sub-sequence $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i$ or sub-sequence $x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$ has at least $\frac{p+2}{3}$ elements.

7.7 Hashing

EADS □|||||| © Ernst Mayr, Harald Räcke

289

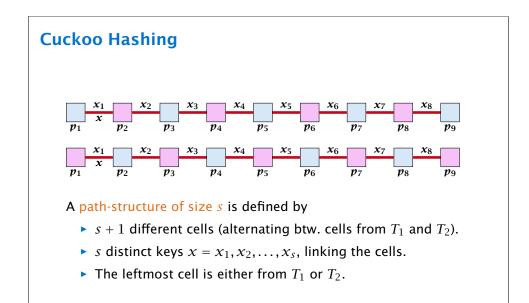
Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting with x in the order that they are visited during the phase.

Lemma 32

If the sequence is of length p then there exists a sub-sequence of at least $\frac{p+2}{3}$ keys starting with x of distinct keys.

Solution EADS	7.7 Hashing	
CErnst M	ayr, Harald Räcke	288



A path-structure is active if for every key x_{ℓ} (linking a cell p_i from T_1 and a cell p_j from T_2) we have

 $h_1(x_{\ell}) = p_i$ and $h_2(x_{\ell}) = p_j$

Observation:

If a phase takes at least t steps without running into a cycle there must exist an active path-structure of size (2t + 2)/3.

Note that we count complete steps. A search that touches 2t or 2t + 1 keys takes t steps.

EADS © Ernst Mayr, Harald Räcke 7.7 Hashing

291

293

Cuckoo Hashing

We choose maxsteps $\ge 3\ell/2 + 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

Pr[unsuccessful | no cycle]

 $\leq \Pr[\exists active path-structure of size at least \frac{2maxsteps-1}{3}]$

 $\leq \Pr[\exists active path-structure of size at least \ell + 1]$

 $\leq \Pr[\exists active path-structure of size exactly \ell + 1]$

$$\leq 2\mu^2 \Big(\frac{1}{1+\epsilon}\Big)^\ell \leq \frac{1}{m^2}$$

by choosing $\ell \geq \log{\left(\frac{1}{2\mu^2m^2}\right)}/\log{\left(\frac{1}{1+\epsilon}\right)} = \log{\left(2\mu^2m^2\right)}/\log{\left(1+\epsilon\right)}$

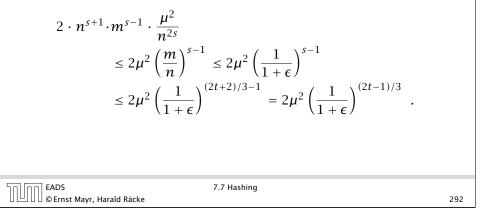
This gives maxsteps = $\Theta(\log m)$. Note that the existence of a path structure of size larger than *s* implies the existence of a path structure of size exactly *s*.

EADS © Ernst Mayr, Harald Räcke	7.7 Hashing
🛛 💾 🛛 🖉 © Ernst Mayr, Harald Räcke	

Cuckoo Hashing

The probability that a given path-structure of size *s* is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most



Cuckoo Hashing	
So far we estimated	
$\Pr[cycle] \le \mathcal{O}$	$\left(\frac{1}{m^2}\right)$
and Pr[unsuccessful no c	$ycle] \leq \mathcal{O}\Big(rac{1}{m^2}\Big)$
Observe that	
Pr[successful] = Pr[no cycle] - F	r[unsuccessful no cycle]
$\geq c \cdot \Pr[no cycle]$	
for a suitable constant $c > 0$.	This is a very weak (and trivial) statement but still sufficient for our asymptotic analysis.
EADS 7.7 Hashing © Ernst Mayr, Harald Räcke	294

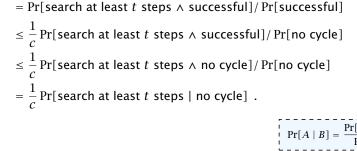
The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

 $=\sum_{t\geq 1} \Pr[$ ast t steps | phase successful]

We have

 $\Pr[\text{search at least } t \text{ steps } | \text{successful}]$



Cuckoo Hashing

EADS

∐|∐∐©Ernst Mayr, Harald Räcke

A phase that is not successful induces cost $\mathcal{O}(m)$ for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $p = O(1/m^2)$ (probability $O(1/m^2)$ of running into a cycle and probability $\mathcal{O}(1/m^2)$ of reaching maxsteps without running into a cycle).

7.7 Hashing

The expected number of unsuccessful phases is $\sum_{i\geq 1} p^{i} = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \mathcal{O}(p).$

Therefore the expected cost for re-hashes is $\mathcal{O}(m) \cdot \mathcal{O}(p) = \mathcal{O}(1/m).$

$$\frac{Pr[search at least t steps | successful]}{Pr[search at least t steps \land successful]/Pr[}$$

$$] = \frac{\Pr[A \land B]}{\Pr[B]}$$

297

7.7 Hashing

296

Cuckoo Hashing

Hence,

E[number of steps | phase successful]

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]$$

$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3}$$

$$\leq \frac{2\mu^2 (1+\epsilon)^{2/3}}{c} \sum_{t \geq 0} \left(\frac{1}{(1+\epsilon)^{2/3}}\right)^t = \mathcal{O}(1) \ .$$

This means the expected cost for a successful phase is constant (even after accounting for the cost of the incomplete step that finishes the phase).

Cuckoo Hashing

EADS © Ernst Mayr, Harald Räcke

What kind of hash-functions do we need?

Since maxsteps is $\Theta(\log m)$ the largest size of a path-structure or cycle-structure contains just $\Theta(\log m)$ different keys.

Therefore, it is sufficient to have $(\mu, \Theta(\log m))$ -independent hash-functions.

How do we make sure that $n \ge (1 + \epsilon)m$?

- Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \geq \alpha n$ we double *n* and do a complete re-hash (table-expand).
- Whenever *m* drops below $\alpha n/4$ we divide *n* by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have $m = \alpha n/2$. In order for a table-expand to occur at least $\alpha n/2$ insertions are required. Similar, for a table-shrink at least $\alpha n/4$ deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.

EADS 7.7 H © Ernst Mayr, Harald Räcke	lashing
--	---------

Hash	hing)	
Bib	oliograp	hy	
[MS	S08]	Kurt Mehlhorn, Peter Sanders: <i>Algorithms and Data Structures — The Basic Toolbox</i> , Springer, 2008	
[CL	LRS90]	Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009	
		of [MS08] contains a detailed description about Hashing with Linear Probing and Hashing ing. Also the Perfect Hashing scheme can be found there.	
Ch	apter İ	is of Hashing with Chaining under the assumption of uniform hashing can be found in .2 of [CLRS90]. Chapter 11.3.3 describes Universal Hashing. Collision resolution with Open g is described in Chapter 11.4. Chapter 11.5 describes the Perfect Hashing scheme.	
Ref	ference	for Cuckoo Hashing???	
החותר	EADS	7.7 Hashing	
	© Ernst	Mayr, Harald Räcke	301

Cuckoo Hashing

Lemma 33

Cuckoo Hashing has an expected constant insert-time and a worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number of keys/total number of hash-table slots) is at most $\frac{1}{2(1+\epsilon)}$.

EADS © Ernst Mayr, Harald Räcke

299

7.7 Hashing

300

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S.build(x_1, \ldots, x_n): Creates a data-structure that contains just the elements x_1, \ldots, x_n .
- S.insert(x): Adds element x to the data-structure.
- element *S*.minimum(): Returns an element $x \in S$ with minimum key-value key[x].
- element *S*.delete-min(): Deletes the element with minimum key-value from *S* and returns it.
- **boolean** *S*.is-empty(): Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

n EADS

• S.merge(S'): $S := S \cup S'$; $S' := \emptyset$.

8 Priority Queues

An addressable Priority Queue also supports:

- handle S.insert(x): Adds element x to the data-structure, and returns a handle to the object for future reference.
- **S.delete**(*h*): Deletes element specified through handle *h*.
- S.decrease-key(h, k): Decreases the key of the element specified by handle h to k. Assumes that the key is at least k before the operation.

302

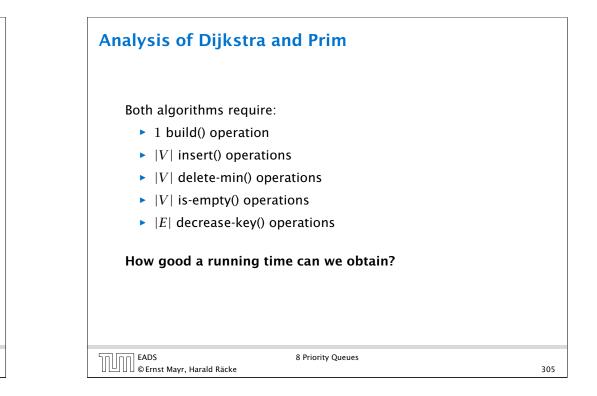
304

EADS 8 Priority Queues © Ernst Mayr, Harald Räcke
--

Prim's Minimum Spanning Tree Algorithm Algorithm 19 Prim-MST($G = (V, E, d), s \in V$) 1: **Input:** weighted graph G = (V, E, d); start vertex s; 2: **Output:** pred-fields encode MST; 3: *S*.build(); // build empty priority queue 4: for all $v \in V \setminus \{s\}$ do 5: v.key $\leftarrow \infty$; $h_v \leftarrow S.insert(v);$ 6: 7: s.key $\leftarrow 0$; S.insert(s); 8: while *S*.is-empty() = false do 9: $v \leftarrow S.delete-min()$: for all $x \in V$ s.t. $\{v, x\} \in E$ do 10: if x.key > d(v, x) then 11: 12: S.decrease-key $(h_x, d(v, x))$; x.key $\leftarrow d(v, x);$ 13: 14: x.pred $\leftarrow v$; EADS 8 Priority Queues U]UU©Ernst Mayr, Harald Räcke

Dijkstra's Shortest Path Algorithm

Algorithm 18 Shortest-Path($G = (V, E, d), s \in V$) 1: **Input:** weighted graph G = (V, E, d); start vertex *s*; 2: **Output:** key-field of every node contains distance from *s*; 3: *S*.build(); // build empty priority queue 4: for all $v \in V \setminus \{s\}$ do 5: v.key $\leftarrow \infty$; 6: $h_v \leftarrow S.insert(v);$ 7: s.key $\leftarrow 0$; S.insert(s); 8: while *S*.is-empty() = false do $v \leftarrow S.delete-min();$ 9: for all $x \in V$ s.t. $(v, x) \in E$ do 10: 11: if x.key > v.key +d(v, x) then 12: S.decrease-key(h_x , v. key + d(v, x)); 13: x.key $\leftarrow v$.key + d(v, x); EADS © Ernst Mayr, Harald Räcke 8 Priority Oueues 303



8 Priority Queues

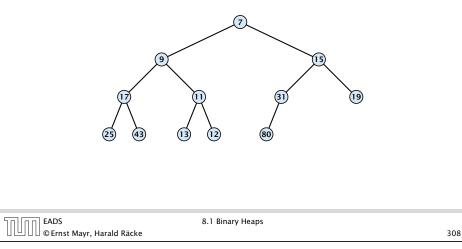
Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n\log n$	$n\log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use **build()** only to create an empty heap which then costs time 1.

* Fibonacci heaps only give an amortized guarantee.	** The standard version of binary heaps is not address- able. Hence, it does not support a delete.	
EADS © Ernst Mayr, Harald Räcke	8 Priority Queues 30	5

8.1 Binary Heaps

- Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.
- Heap property: A node's key is not larger than the key of one of its children.



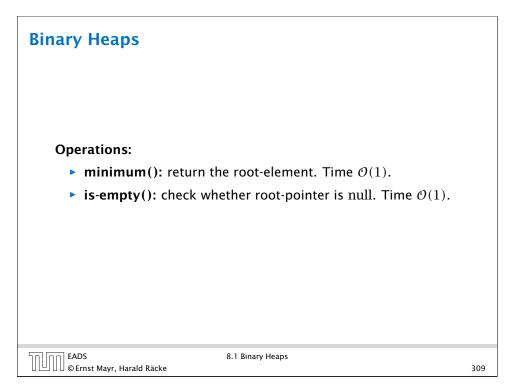
8 Priority Queues

Using Binary Heaps, Prim and Dijkstra run in time $\mathcal{O}((|V| + |E|) \log |V|).$

Using Fibonacci Heaps, Prim and Dijkstra run in time $O(|V| \log |V| + |E|)$.

EADS ©Ernst Mayr, Harald Räcke

8 Priority Queues



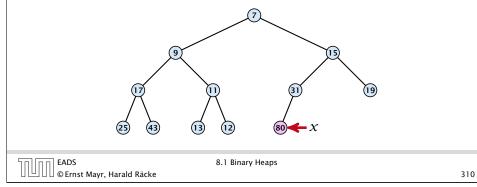
8.1 Binary Heaps

Maintain a pointer to the last element *x*.

 We can compute the predecessor of x (last element when x is deleted) in time O(log n).

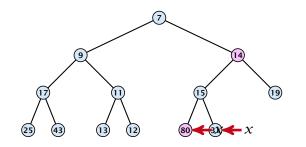
go up until the last edge used was a right edge. go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element



Insert

- **1.** Insert element at successor of *x*.
- 2. Exchange with parent until heap property is fulfilled.



Note that an exchange can either be done by moving the data or by changing pointers. The latter method leads to an addressable priority queue.

החוחר	EADS © Ernst Mayr, Harald Räcke
	©Ernst Mayr, Harald Räcke

8.1 Binary Heaps

312

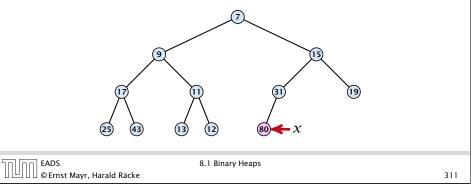
8.1 Binary Heaps

Maintain a pointer to the last element *x*.

► We can compute the successor of x (last element when an element is inserted) in time O(log n).

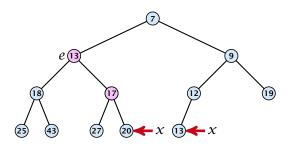
go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost element; insert a new element as a left child;



Delete

- 1. Exchange the element to be deleted with the element *e* pointed to by *x*.
- **2.** Restore the heap-property for the element *e*.



At its new position e may either travel up or down in the tree (but not both directions).

EADS © Ernst Mayr, Harald Räcke

Binary Heaps

Operations:

- **minimum()**: return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** check whether root-pointer is null. Time O(1).
- **insert**(*k*): insert at *x* and bubble up. Time $O(\log n)$.
- **delete**(*h*): swap with *x* and bubble up or sift-down. Time $\mathcal{O}(\log n)$.

	8.1 Binary Heaps
EADS © Ernst Mayr, Harald Räcke	<i>,</i> ,

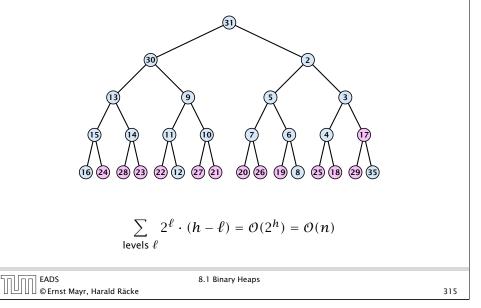
Binary Heaps

Operations:

- **minimum()**: Return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** Check whether root-pointer is null. Time $\mathcal{O}(1)$.
- **insert**(*k*): Insert at *x* and bubble up. Time $O(\log n)$.
- **delete**(*h*): Swap with *x* and bubble up or sift-down. Time $\mathcal{O}(\log n).$
- **build** (x_1, \ldots, x_n) : Insert elements arbitrarily; then do sift-down operations starting with the lowest layer in the tree. Time $\mathcal{O}(n)$.

Build Heap

We can build a heap in linear time:



Binary Heaps

EADS

© Ernst Mayr, <u>Harald Räcke</u>

The standard implementation of binary heaps is via arrays. Let $A[0,\ldots,n-1]$ be an array

- The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- The left child of *i*-th element is at position 2i + 1.
- The right child of *i*-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don't maintain their positions and therefore there are no stable handles.

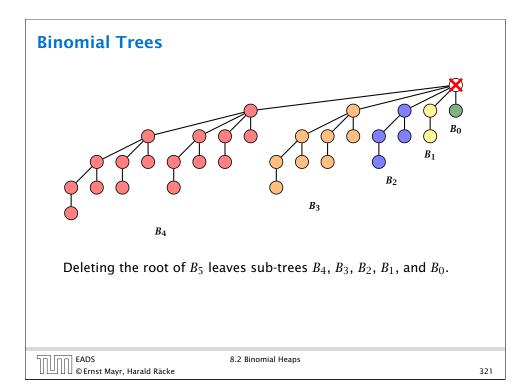
8.2 Binomial Heaps

Γ

build $n n \log n n \log n$
minimum 1 $\log n$ $\log n$ 1
is-empty 1 1 1 1
insert $\log n$ $\log n$ $\log n$ 1
delete $\log n^{**}$ $\log n$ $\log n$ $\log n$
delete-min $\log n$ $\log n$ $\log n$ $\log n$
decrease-key $\log n$ $\log n$ $\log n$ 1
merge <i>n n</i> log <i>n</i> 1

Binomial Trees Properties of Binomial Trees • B_k has 2^k nodes. • B_k has height k. • The root of B_k has degree k. • B_k has $\binom{k}{\ell}$ nodes on level ℓ . • Deleting the root of B_k gives trees B_0, B_1, \dots, B_{k-1} .

EADS © Ernst Mayr, Harald Räcke

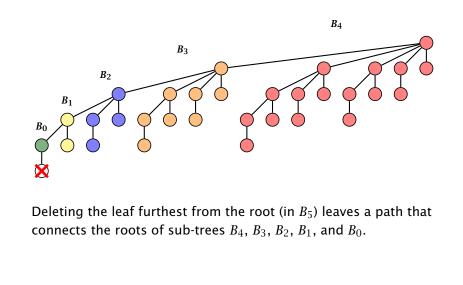


8.2 Binomial Heaps

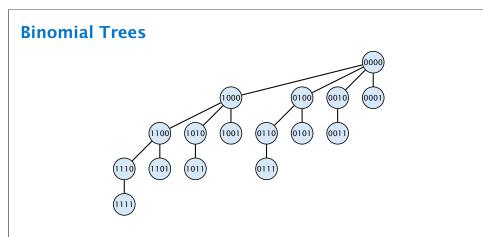
319

8.2 Binomial Heaps

Binomial Trees



	8.2 Binomial Heaps	
🛛 💾 🔲 🛛 🛛 Ernst Mayr, Harald Räcke		322



The binomial tree B_k is a sub-graph of the hypercube H_k .

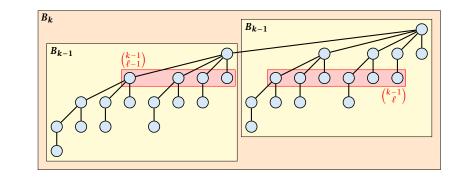
The parent of a node with label b_n, \ldots, b_1, b_0 is obtained by setting the least significant 1-bit to 0.

The ℓ -th level contains nodes that have ℓ 1's in their label.

הם הר	EADS © Ernst Mayr, Harald	
	© Ernst Mayr, Harald	Räcke

324

Binomial Trees



The number of nodes on level ℓ in tree B_k is therefore

$\binom{k-1}{\ell-1}$ +	(k-1)	_ ($\langle k \rangle$
$\left(\ell-1\right)^+$	(l)	- ((l)

EADS © Ernst Mayr, Harald Räcke 8.2 Binomial Heaps

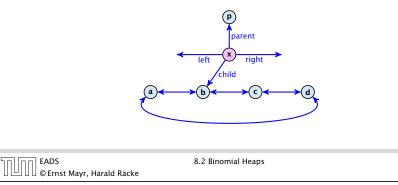
323

325

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x. left and x. right point to the left and right sibling of x (if x does not have siblings then x. left = x. right = x).



8.2 Binomial Heaps

- Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time.
- \blacktriangleright We can add a child-tree T to a node x in constant time if we are given a pointer to x and a pointer to the root of T.

החוחר	EADS © Ernst Mayr, Harald Räcke
	© Ernst Mayr, Harald Räcke

8.2 Binomial Heaps

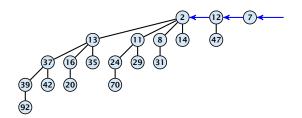
Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n = \sum_{i} 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the binary representation of *n*.

Binomial Heap



In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example the above heap contains trees B_0 , B_1 , and B_4 .

EADS © Ernst Mayr, Harald Räcke

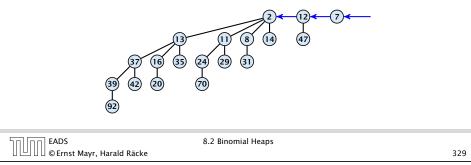
Binomial Heap

8.2 Binomial Heaps

Properties of a heap with *n* keys: • Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n. • The heap contains tree B_i iff $b_i = 1$.

327

- Hence, at most $|\log n| + 1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lfloor \log n \rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.



Binomial Heap: Merge

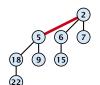
The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Note that we do not just do a concatenation as we want to keep the trees in the list sorted according to size.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.



For more trees the technique is analogous to binary addition.

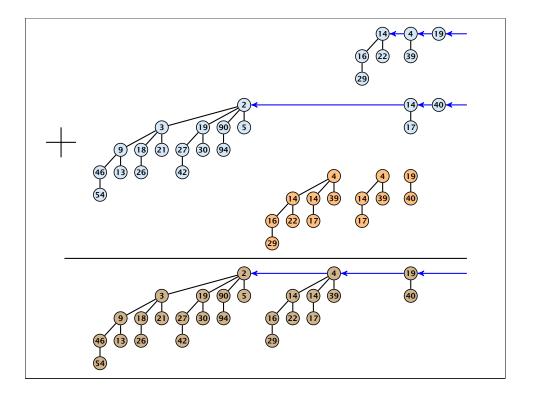
EADS © Ernst Mayr, Harald Räcke
© Ernst Mayr, Harald Räcke

8.2 Binomial Heaps

8.2 Binomial Heaps

 S_1 .merge(S_2):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.
- ▶ Time: $\mathcal{O}(\log n)$.



8.2 Binomial Heaps All other operations can be reduced to merge(). S.insert(x): • Create a new heap S' that contains just the element x. **Execute** S.merge(S'). • Time: $\mathcal{O}(\log n)$.

332

EADS

©Ernst Mayr, Harald Räcke

8.2 Binomial Heaps

S.minimum():

- Find the minimum key-value among all roots.
- ▶ Time: $O(\log n)$.

	8.2 Binomial Heaps	
UUUC © Ernst Mayr, Harald Räcke		334

8.2 Binomial Heaps

S.decrease-key(handle *h*):

- Decrease the key of the element pointed to by *h*.
- Bubble the element up in the tree until the heap property is fulfilled.
- Time: $\mathcal{O}(\log n)$ since the trees have height $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

S.delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $O(\log n)$ trees).
- ► Compute *S*.merge(*S*′).
- Time: $\mathcal{O}(\log n)$.

EADS © Ernst Mayr, Harald Räcke	8.2 Binomial Heaps	335

8.2 Binomial Heaps

8.2 Binomial Heaps

S.delete(handle h):

- Execute S.decrease-key $(h, -\infty)$.
- Execute *S*.delete-min().
- Time: $\mathcal{O}(\log n)$.

Definition 34

A data structure with operations $op_1(), \ldots, op_k()$ has amortized running times t_1, \ldots, t_k for these operations if the following holds.

Suppose you are given a sequence of operations (starting with an empty data-structure) that operate on at most n elements, and let k_i denote the number of occurences of $op_i()$ within this sequence. Then the actual running time must be at most $\sum_i k_i \cdot t_i(n)$.

Selection EADS	8.3 Fibonacci Heaps
EADS © Ernst Mayr, Harald Räcke	

Example: Stack

Stack

- S. push()
- ▶ S.pop()
- S. multipop(k): removes k items from the stack. If the stack currently contains less than k items it empties the stack.
- The user has to ensure that pop and multipop do not generate an underflow.

Actual cost:

- ► S. push(): cost 1.
- ► S. pop(): cost 1.
- *S*. multipop(k): cost min{size, k} = k.

החוחר	EADS © Ernst Mayr, Harald	
	© Ernst Mayr, Harald	Räcke

8.3 Fibonacci Heaps

340

338

Potential Method

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

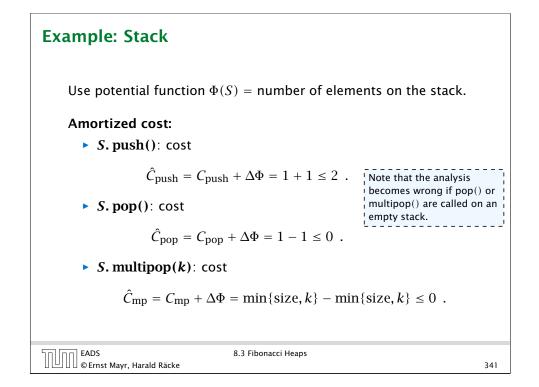
Show that $\Phi(D_i) \ge \Phi(D_0)$.

Then

$$\sum_{i=1}^{k} c_i \le \sum_{i=1}^{k} c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^{k} \hat{c}_i$$

This means the amortized costs can be used to derive a bound on the total cost.

EADS © Ernst Mayr, Harald Räcke	8.3 Fibonacci Heaps	
🛛 🛄 🖶 🕼 © Ernst Mayr, Harald Räcke		339



Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an *n*-bit binary counter may require to examine *n*-bits, and maybe change them.

Actual cost:

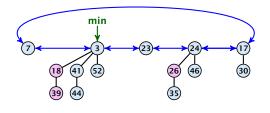
- Changing bit from 0 to 1: cost 1.
- Changing bit from 1 to 0: cost 1.
- Increment: cost is k + 1, where k is the number of consecutive ones in the least significant bit-positions (e.g. 001101 has k = 1).

EADS © Ernst Mayr, Harald Räcke	8.3 Fibonacci Heaps	
🛛 🕒 🛛 🖉 © Ernst Mayr, Harald Räcke		342

8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.



Example: Binary Counter

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

• Changing bit from 0 to 1:

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2 \ .$$

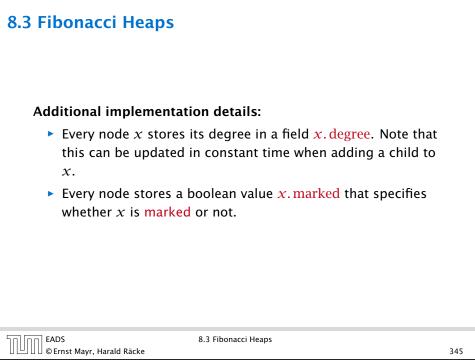
• Changing bit from 1 to 0:

$$\hat{C}_{1\to 0} = C_{1\to 0} + \Delta \Phi = 1-1 \le 0 \ .$$

• Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k $(1 \rightarrow 0)$ -operations, and one $(0 \rightarrow 1)$ -operation.

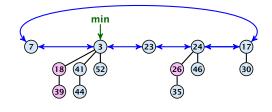
Hence, the amortized cost is $k\hat{C}_{1\rightarrow 0} + \hat{C}_{0\rightarrow 1} \leq 2$.

EADS © Ernst Mayr, Harald Räcke	8.3 Fibonacci Heaps	
🛛 🕒 🛛 🖉 © Ernst Mayr, Harald Räcke		343



The potential function:

- t(S) denotes the number of trees in the heap.
- m(S) denotes the number of marked nodes.
- We use the potential function $\Phi(S) = t(S) + 2m(S)$.



The potential is $\Phi(S) = 5 + 2 \cdot 3 = 11$.

	8.3 Fibonacci Heaps	
🛛 💾 🛛 🖉 © Ernst Mayr, Harald Räcke		346

8.3 Fibonacci Heaps

S. minimum()

- Access through the min-pointer.
- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- Amortized cost $\mathcal{O}(1)$.

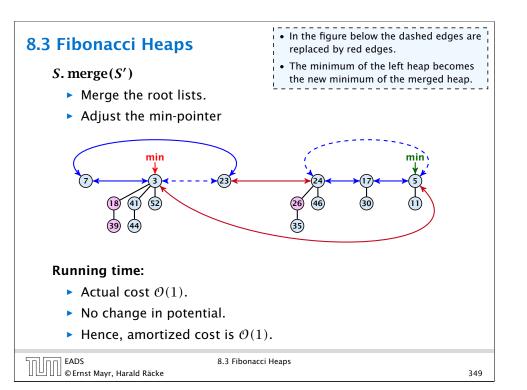
EADS © Ernst Mayr, Harald Räcke	8.3 Fibonacci Heaps	

348

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).

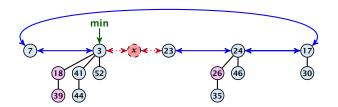
To make this more explicit we use *c* to denote the amount of work that a unit of potential can pay for.



x is inserted next to the min-pointer as this is our entry point into the root-list.

S. insert(x)

- Create a new tree containing x.
- Insert x into the root-list.
- Update min-pointer, if necessary.



Running time:

- Actual cost $\mathcal{O}(1)$.
- ► Change in potential is +1.
- Amortized cost is c + O(1) = O(1).

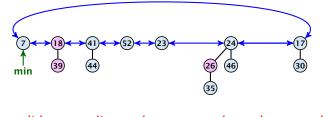
	8.3 Fibonacci Heaps	
🛛 🛄 🖓 🖉 Ernst Mayr, Harald Räcke		350

8.3 Fibonacci Heaps

 $D(\min)$ is the number of children of the node that stores the minimum.

351

- S. delete-min(x)
 - ► Delete minimum; add child-trees to heap; time: D(min) · O(1).
 - Update min-pointer; time: $(t + D(\min)) \cdot O(1)$.



► Consolidate root-list so that no roots have the same degree. Time t · O(1) (see next slide).

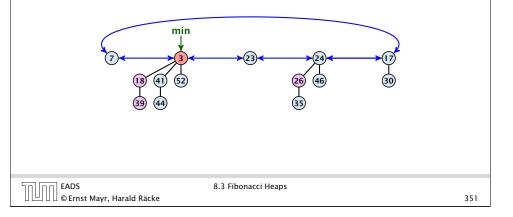
|--|

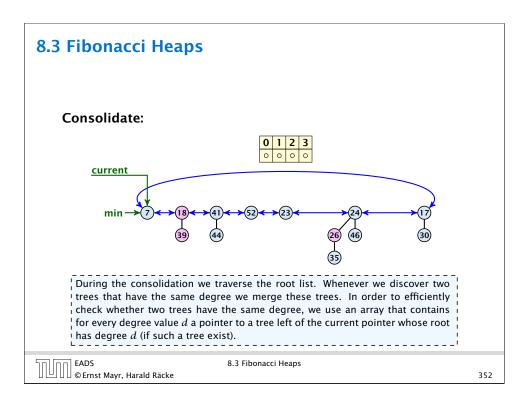
8.3 Fibonacci Heaps

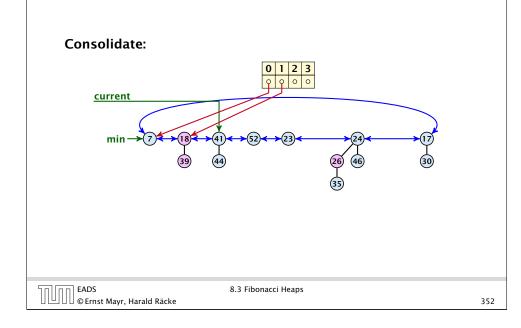
 $D(\min)$ is the number of children of the node that stores the minimum.

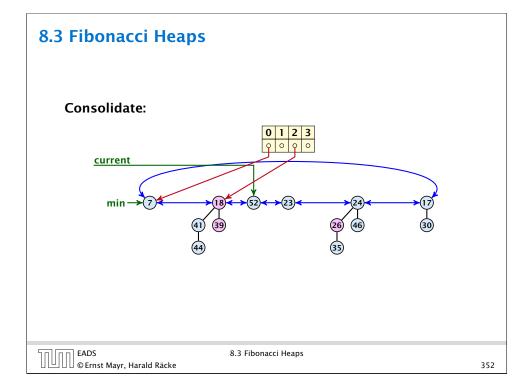
S. delete-min(x)

- ► Delete minimum; add child-trees to heap; time: D(min) · O(1).
- Update min-pointer; time: $(t + D(\min)) \cdot O(1)$.

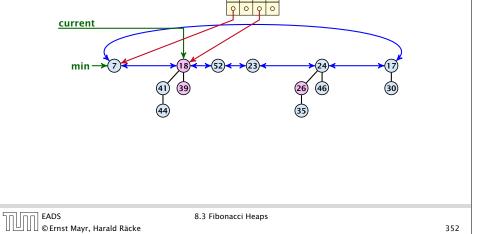


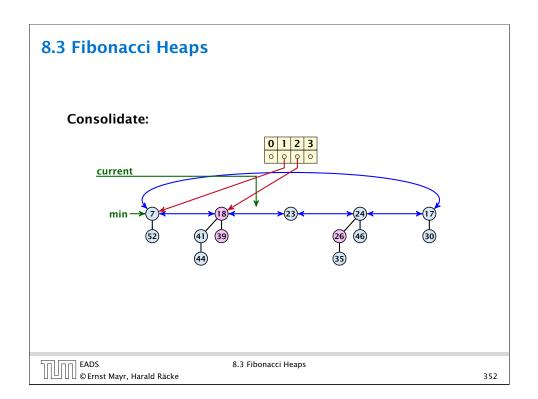


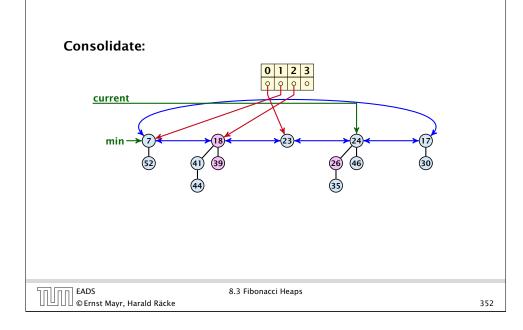


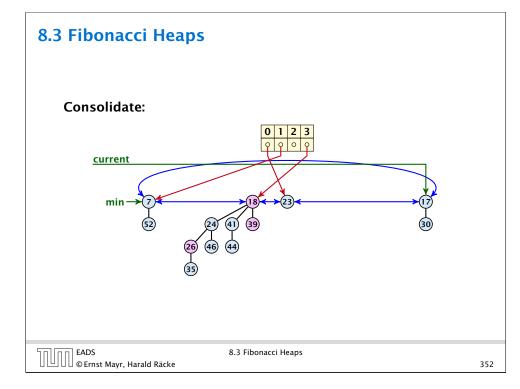


8.3 Fibonacci Heaps Consolidate:









8.3 Fibonacci Heaps Consolidate:

EADS © Ernst Mayr, Harald Räcke



8.3 Fibonacci Heaps

t and t' denote the number of trees before and after the delete-min() operation, respectively. D_n is an upper bound on the degree (i.e., number of children) of a tree node.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $O(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

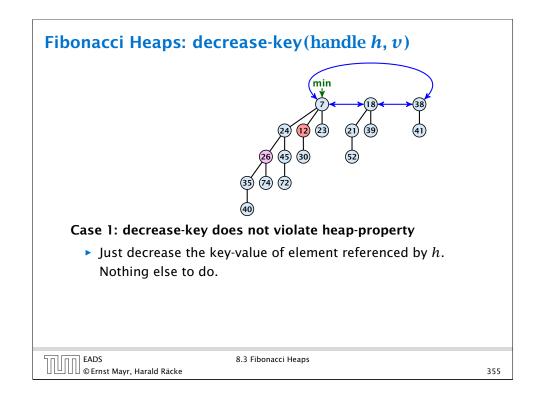
- ▶ $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

 $c_1 \cdot (D_n + t) - \frac{c}{c} \cdot (t - D_n - 1)$

$$\leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1) \leq \mathcal{O}(D_n)$$

for $c \geq c_1$.

רח (הה) EADS	8.3 Fibonacci Heaps	
UUUC © Ernst Mayr, Harald Räcke		353

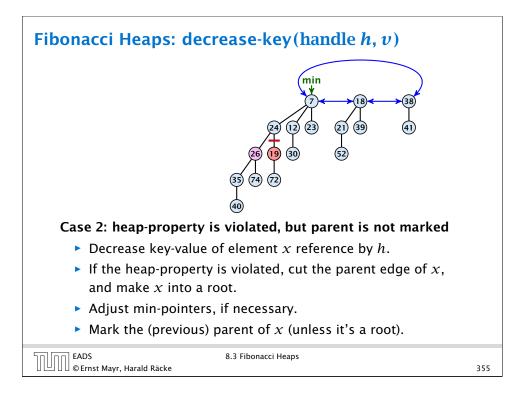


8.3 Fibonacci Heaps

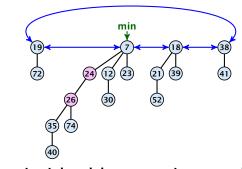
If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then $D_n \leq \log n$.

EADS 8.3 Fibonacci Heaps © Ernst Mayr, Harald Räcke 354



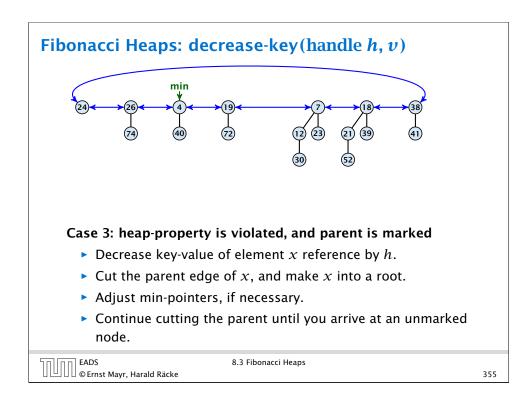
Fibonacci Heaps: decrease-key(handle h, v)



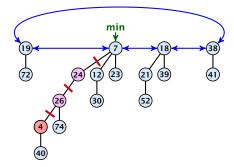
Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of *x* (unless it's a root).

EADS © Ernst Mayr, Harald Bäcke	8.3 Fibonacci Heaps	
UUUC © Ernst Mayr, Harald Räcke		355



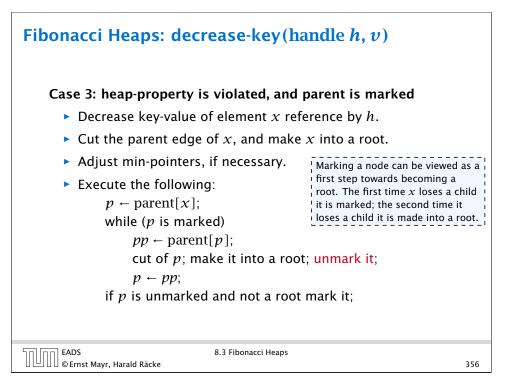
Fibonacci Heaps: decrease-key(handle h, v)



Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element *x* reference by *h*.
- Cut the parent edge of *x*, and make *x* into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

EADS © Ernst Mayr, Harald Räcke	8.3 Fibonacci Heaps	
🛛 🕒 🛛 🖉 Ernst Mayr, Harald Räcke		355



Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

if $C \geq C_2$.

- $t' = t + \ell$, as every cut creates one new root.
- $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most
- $c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c + c_2 = O(1), m \text{ and } m': \text{ number of } m' \le 0$

operation. m and m': number of marked nodes before and after operation.

357

t and t': number of trees before and after

EADS © Ernst Mayr, Harald Räcke	8.3 Fibonacci Heaps

8.3 Fibonacci Heaps Lemma 35 Let x be a node with degree k and let y_1, \ldots, y_k denote the children of x in the order that they were linked to x. Then $degree(y_i) \ge \begin{cases} 0 & \text{if } i = 1\\ i - 2 & \text{if } i > 1 \end{cases}$ The marking process is very important for the proof of this lemma. It ensures that a node can have lost at most one child since the last time it became a non-root node. When losing a first child the node gets marked; when losing the second child it is cut from the parent and made into a root.

EADS © Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

359

Delete node

H.delete(*x*):

- decrease value of x to $-\infty$.
- delete-min.

Amortized cost: $\mathcal{O}(D_n)$

- $\mathcal{O}(1)$ for decrease-key.
- $\mathcal{O}(Dn)$ for delete-min.

רח EADS	8.3 Fibonacci Heaps	
UUUC © Ernst Mayr, Harald Räcke		358

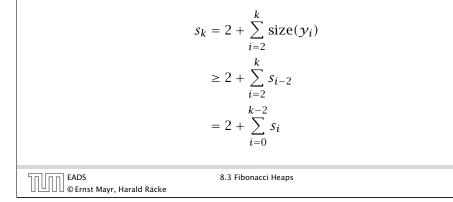
8.3 Fibonacci Heaps

Proof

- When y_i was linked to x, at least y₁,..., y_{i-1} were already linked to x.
- Hence, at this time degree(x) ≥ i − 1, and therefore also degree(y_i) ≥ i − 1 as the algorithm links nodes of equal degree only.
- Since, then y_i has lost at most one child.
- Therefore, degree(y_i) $\ge i 2$.

- Let sk be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_k monotonically increases with k
- $s_0 = 1$ and $s_1 = 2$.

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.



Priority Queues Bibliography [CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009 [MS08] Kurt Mehlhorn, Peter Sanders: Algorithms and Data Structures — The Basic Toolbox, Springer, 2008 Binary heaps are covered in [CLRS90] in combination with the heapsort algorithm in Chapter 6. Fibonacci heaps are covered in detail in Chapter 19. Problem 19-2 in this chapter introduces Binomial heaps. Chapter 6 in [MS08] covers Priority Queues, Chapter 6.2.2 discusses Fibonacci heaps, Binomial heaps are dealt with in Exercise 6.11. EADS 8.3 Fibonacci Heaps □] [] [] © Ernst Mayr, Harald Räcke

8.3 Fibonacci Heaps

Definition 36

Consider the following non-standard Fibonacci type sequence:

$$F_k = \begin{cases} 1 & \text{if } k = 0 \\ 2 & \text{if } k = 1 \\ F_{k-1} + F_{k-2} & \text{if } k \ge 2 \end{cases}$$

Facts:

1. $F_k \ge \phi^k$. 2. For $k \ge 2$: $F_k = 2 + \sum_{i=0}^{k-2} F_i$.

The above facts can be easily proved by induction. From this it follows that $s_k \ge F_k \ge \phi^k$, which gives that the maximum degree in a Fibonacci heap is logarithmic.

EADS © Ernst Mayr, Harald Räcke	8.3 Fibonacci Heaps	
🛛 🕒 🛛 🖉 Ernst Mayr, Harald Räcke		362

9 Union Find

361

363

Union Find Data Structure \mathcal{P} : Maintains a partition of disjoint sets over elements.

- P. makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- P. find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- **P**. union(x, y): Given two elements x, and y that are currently in sets S_x and S_y , respectively, the function replaces S_x and S_y by $S_x \cup S_y$ and returns an identifier for the new set.

9 Union Find

Applications:

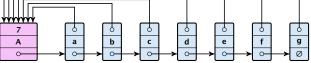
- Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.
- Kruskals Minimum Spanning Tree Algorithm

החוחר	EADS © Ernst Mayr, Harald Räcke
	© Ernst Mayr, Harald Räcke

9 Union Find

364

List Implementation The elements of a set are stored in a list; each node has a backward pointer to the head. The head of the list contains the identifier for the set and a field that stores the size of the set.



- makeset(x) can be performed in constant time.
- find(x) can be performed in constant time.

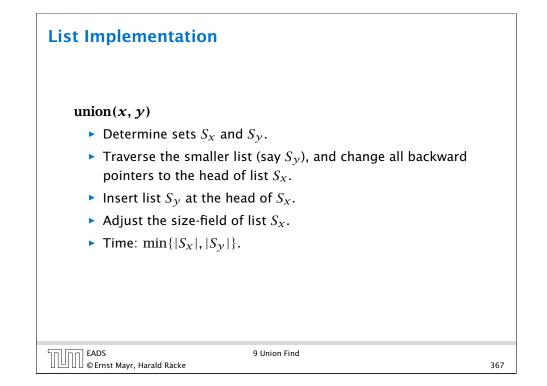
50,00	EADS © Ernst Mayr, Harald	
	© Ernst Mayr, Harald	Räcke

366

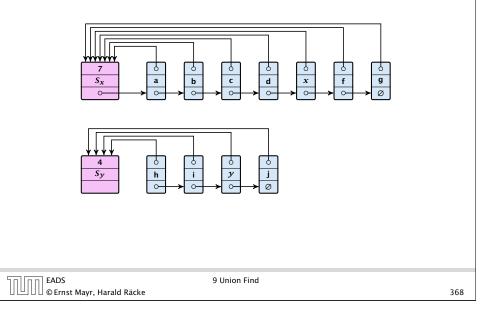
9 Union Find

Algorithm 1 Kruskal-MST(G = (V, E), w)1: $A \leftarrow \emptyset$;2: for all $v \in V$ do3: $v.set \leftarrow \mathcal{P}.makeset(v.label)$ 4: sort edges in non-decreasing order of weight w5: for all $(u, v) \in E$ in non-decreasing order do6: if $\mathcal{P}.find(u.set) \neq \mathcal{P}.find(v.set)$ then7: $A \leftarrow A \cup \{(u, v)\}$ 8: $\mathcal{P}.union(u.set, v.set)$

	9 Union Find	
UUU©Ernst Mayr, Harald Räcke		365



List Implementation



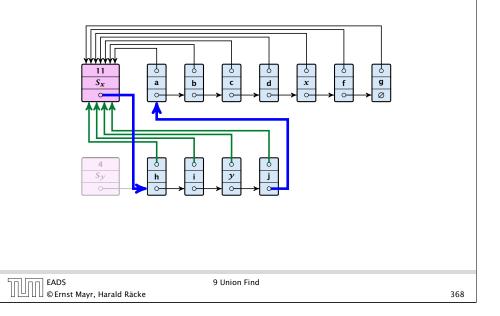
List Implementation Running times: • find(x): constant • makeset(x): constant • union(x, y): O(n), where n denotes the number of elements contained in the set system.

9 Union Find

EADS © Ernst Mayr, Harald Räcke

369

List Implementation



List Implementation

Lemma 37

The list implementation for the ADT union find fulfills the following amortized time bounds:

- find(x): $\mathcal{O}(1)$.
- makeset(x): $\mathcal{O}(\log n)$.
- union(x, y): $\mathcal{O}(1)$.

The Accounting Method for Amortized Time Bounds

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

הם הי	EADS © Ernst Mavr. Harald Räcke
	© Ernst Mayr, Harald Räcke

9 Union Find

371

List Implementation

makeset(x) : The actual cost is O(1). Due to the cost inflation the amortized cost is $O(\log n)$.

find(x) : For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: O(1).

union(x, y):

- If $S_x = S_y$ the cost is constant; no bank accounts change.
- Otw. the actual cost is $\mathcal{O}(\min\{|S_{\chi}|, |S_{\mathcal{Y}}|\})$.
- Assume wlog. that S_x is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot |S_x|$.
- Charge c to every element in set S_{χ} .

List Implementation

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- ► In total we will charge at most O(log n) to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.

EADS ©Ernst Mayr, Harald Räcke 9 Union Find

List Implementation

Lemma 38

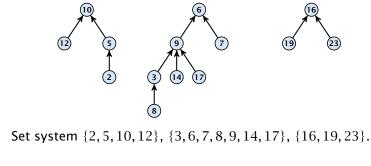
An element is charged at most $\lfloor \log_2 n \rfloor$ times, where n is the total number of elements in the set system.

Proof.

Whenever an element x is charged the number of elements in x's set doubles. This can happen at most $\lfloor \log n \rfloor$ times.

Implementation via Trees

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.
- Example:



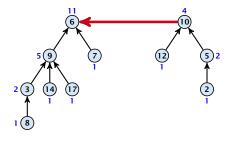
EADS 9 Union Find © Ernst Mayr, Harald Räcke	375

Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)

- ▶ Perform $a \leftarrow \operatorname{find}(x)$; $b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



• Time: constant for link(a, b) plus two find-operations.

Implementation via Trees

makeset(x)

- Create a singleton tree. Return pointer to the root.
- ▶ Time: *O*(1).

find(x)

- Start at element x in the tree. Go upwards until you reach the root.
- Time: O(level(x)), where level(x) is the distance of element x to the root in its tree. Not constant.

The EADS	9 Union Find	
UUUU © Ernst Mayr, Harald Räcke		376

Implementation via Trees

Lemma 39

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

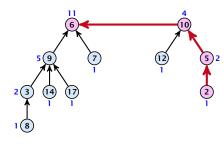
Proof.

- When we attach a tree with root c to become a child of a tree with root p, then size(p) ≥ 2 size(c), where size denotes the value of the size-field right after the operation.
- After that the value of size(c) stays fixed, while the value of size(p) may still increase.
- ► Hence, at any point in time a tree fulfills $size(p) \ge 2 size(c)$, for any pair of nodes (p, c), where p is a parent of c.

Path Compression

find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



Note that the size-fields now only give an upper bound on the size of a sub-tree.

	9 Union Find
EADS © Ernst Mayr, Harald Räcke	

Path Compression

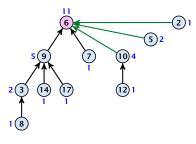
Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on the running time. It can still happen that a find-operation takes time $O(\log n)$.

Path Compression

find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



One could change the algorithm to update the size-fields. This could be done without asymptotically affecting the running time.

However, the only size-field that is actually required is the field at the root, which is always correct.

We will only use the other sizefields for the proof of Theorem 42.

Note that the size-fields now only give an upper bound on the size of a sub-tree.

	9 Union Find	
EADS © Ernst Mayr, Harald Räcke		379

Amortized Analysis

Definitions:

size(v) = the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of v's subtree in the case that there are no find-operations.

- $\operatorname{rank}(v) \coloneqq \lfloor \log(\operatorname{size}(v)) \rfloor$.
- ▶ \Rightarrow size(v) ≥ $2^{\operatorname{rank}(v)}$.

Lemma 40

© Ernst Mayr, Harald Räcke

EADS

The rank of a parent must be strictly larger than the rank of a child.

Lemma 41

There are at most $n/2^s$ nodes of rank s.

Proof.

- Let's say a node v sees node x if v is in x's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contain v during the running time of the algorithm is a strictly increasing sequence.
- Hence, every node *sees* at most one rank *s* node, but every rank *s* node is seen by at least 2^{s} different nodes.

EADS © Ernst Mayr, Harald Räcke	9 Union Find
🛛 🕒 🖯 🕼 Ernst Mayr, Harald Räcke	

Amortized Analysis In the following we assume $n \ge 2$. rank-group: • A node with rank rank(v) is in rank group $log^*(rank(v))$. • The rank-group q = 0 contains only nodes with rank 0 or rank 1. • A rank group $g \ge 1$ contains ranks $tow(g - 1) + 1, \dots, tow(g).$ The maximum non-empty rank group is $\log^*(|\log n|) \le \log^*(n) - 1$ (which holds for $n \ge 2$). • Hence, the total number of rank-groups is at most $\log^* n$.

Amortized Analysis

We define

and

$$\log^*(n) := \min\{i \mid \text{tow}(i) \ge n\}$$

Theorem 42

Union find with path compression fulfills the following amortized running times:

- makeset(x) : $\mathcal{O}(\log^*(n))$
- find(x) : $\mathcal{O}(\log^*(n))$
- union(x, y) : $\mathcal{O}(\log^*(n))$

	9 Union Find	
UUUU©Ernst Mayr, Harald Räcke		383

Amortized Analysis

Accounting Scheme:

EADS

- create an account for every find-operation
- \blacktriangleright create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent [v] as follows:

- If parent[v] is the root we charge the cost to the find-account.
- If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.

9 Union Find

Otherwise we charge the cost to the find-account.

384

Observations:

EADS

© Ernst Mayr, Harald Räcke

- ► A find-account is charged at most log*(n) times (once for the root and at most log*(n) - 1 times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned.
 The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. ⇒ v will never be charged again.
- The total charge made to a node in rank-group g is at most tow(g) - tow(g − 1) − 1 ≤ tow(g).

EADS © Ernst Mayr, Harald Räcke	9 Union Find	386

Amortized Analysis
For
$$g \ge 1$$
 we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\text{tow}(g)-\text{tow}(g-1)-1} \frac{1}{2^s}$$

$$\le \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} \le \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

$$\le \frac{n}{2^{\text{tow}(g-1)+1}} = \frac{n}{\text{tow}(g)}$$
Hence,

$$\sum_{g} n(g) \text{ tow}(g) \le n(0) \text{ tow}(0) + \sum_{g\ge 1} n(g) \text{ tow}(g) \le n \log^*(n)$$

9 Union Find

Amortized Analysis

What is the total charge made to nodes?

• The total charge is at most

$$\sum_{g} n(g) \cdot \operatorname{tow}(g)$$

where n(g) is the number of nodes in group g.

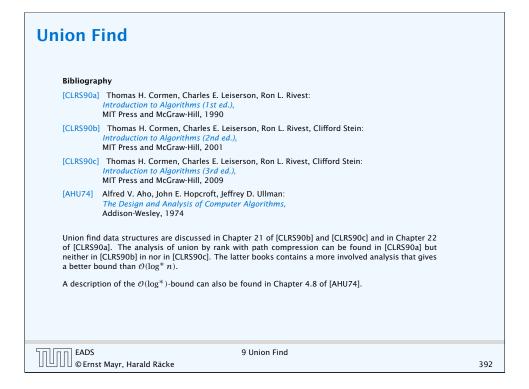
הח] [הח] EADS	9 Union Find	
🛛 🛄 🗍 🖉 Ernst Mayr, Harald Räcke		387

Amortized Analysis
Without loss of generality we can assume that all makeset-operations occur at the start. This means if we inflate the cost of makeset to $\log^* n$ and add this to the node account of v then the balances of all node accounts will sum up to a positive value (this is sufficient to obtain an amortized bound).

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m, n))$, where $\alpha(m, n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

EADS © Ernst Mayr, Harald Räcke	9 Union Find	

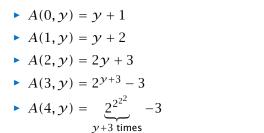


Amortized Analysis

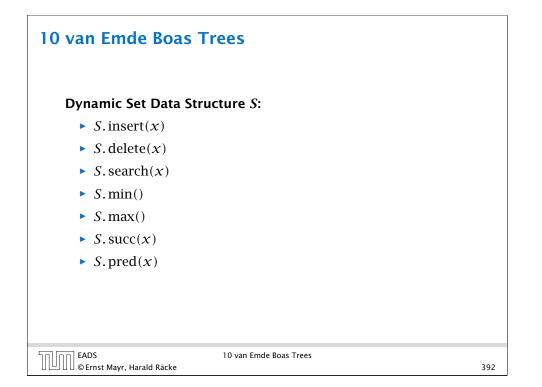
390

$$A(x, y) = \begin{cases} y+1 & \text{if } x = 0\\ A(x-1, 1) & \text{if } y = 0\\ A(x-1, A(x, y-1)) & \text{otw.} \end{cases}$$

 $\alpha(m,n) = \min\{i \ge 1 : A(i,\lfloor m/n \rfloor) \ge \log n\}$



۲ח (הה) EADS	9 Union Find	
UUUU©Ernst Mayr, Harald Räcke		391

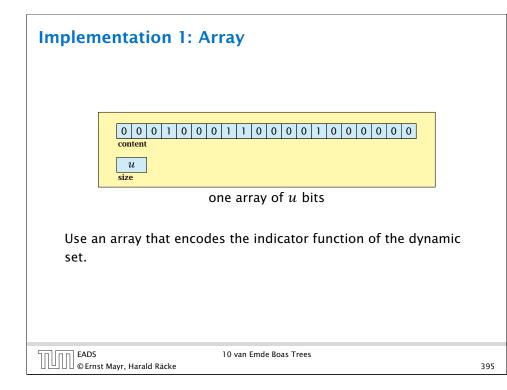


10 van Emde Boas Trees

For this chapter we ignore the problem of storing satellite data:

- ► *S*. insert(*x*): Inserts *x* into *S*.
- S. delete(x): Deletes x from S. Usually assumes that $x \in S$.
- **S. member**(x): Returns 1 if $x \in S$ and 0 otw.
- **S. min():** Returns the value of the minimum element in *S*.
- **S.** max(): Returns the value of the maximum element in *S*.
- S. succ(x): Returns successor of x in S. Returns null if x is maximum or larger than any element in S. Note that x needs not to be in S.
- S. pred(x): Returns the predecessor of x in S. Returns null if x is minimum or smaller than any element in S. Note that x needs not to be in S.

EADS © Ernst Mayr, Harald Räcke	10 van Emde Boas Trees	
🛛 🕒 🛛 🖉 © Ernst Mayr, Harald Räcke		393



10 van Emde Boas Trees

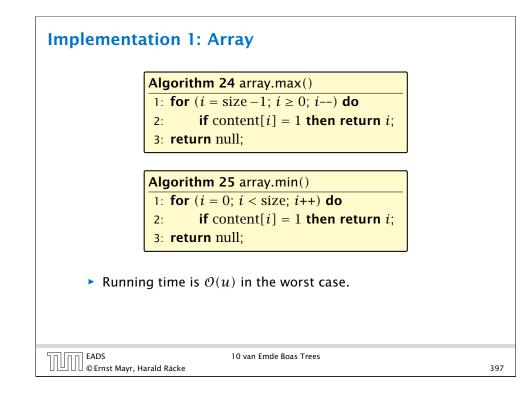
Can we improve the existing algorithms when the keys are from a restricted set?

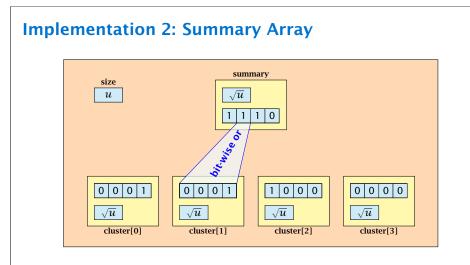
In the following we assume that the keys are from $\{0, 1, \ldots, u - 1\}$, where u denotes the size of the universe.

EADS	10 van Emde Boas Trees	
UUU©Ernst Mayr, Harald Rä	icke	394

Implementa	tion 1: Array	
[Algorithm 21 array.insert(<i>x</i>)	
	1: content[x] \leftarrow 1;	
ſ		
	Algorithm 22 array.delete(<i>x</i>)	
	1: content[x] \leftarrow 0;	
	Algorithm 23 array.member(<i>x</i>)	
	1: return content[<i>x</i>];	
array b	hat we assume that x is valid, i.e., it falls woundaries. sly(?) the running time is constant.	ithin the

EADS © Ernst Mayr, Harald Räcke





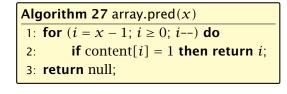
- \sqrt{u} cluster-arrays of \sqrt{u} bits.
- One summary-array of \sqrt{u} bits. The *i*-th bit in the summary array stores the bit-wise or of the bits in the *i*-th cluster.

5000	EADS © Ernst Mayr, Harald Räcke
	©Ernst Mayr, Harald Räcke

Implementation 1: Array

Algorithm 26 array.succ(x) 1: for (i = x + 1; i < size; i++) do 2: if content[i] = 1 then return i;

3: return null;



• Running time is $\mathcal{O}(u)$ in the worst case.

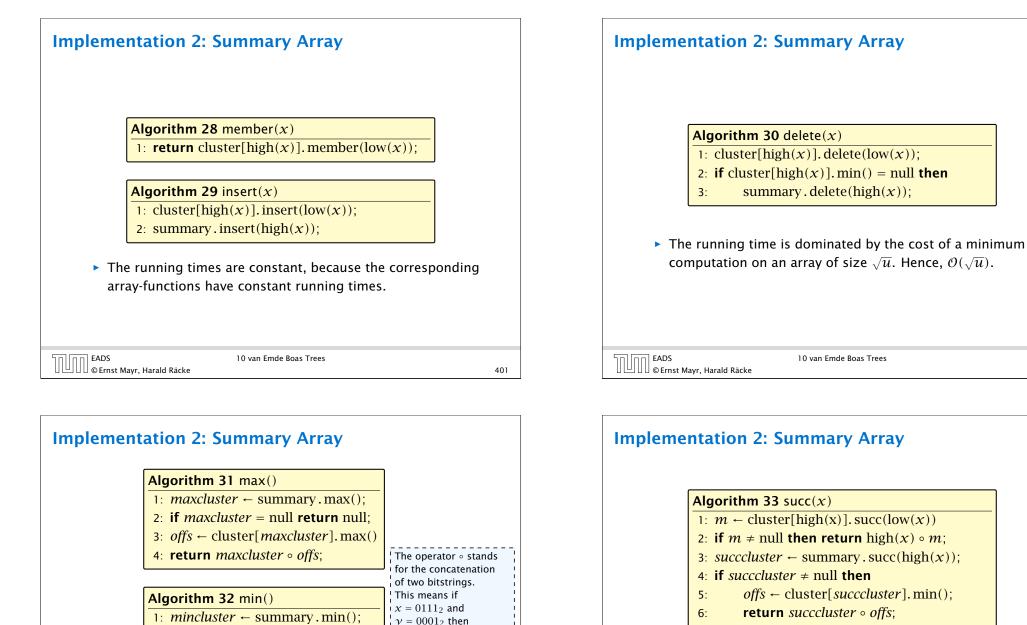
	10 van Emde Boas Trees	
UUUC © Ernst Mayr, Harald Räcke		398

Implementation 2: Summary Array

The bit for a key x is contained in cluster number $\left|\frac{x}{\sqrt{u}}\right|$.

Within the cluster-array the bit is at position $x \mod \sqrt{u}$.

For simplicity we assume that $u = 2^{2k}$ for some $k \ge 1$. Then we can compute the cluster-number for an entry x as high(x) (the upper half of the dual representation of x) and the position of x within its cluster as low(x) (the lower half of the dual representation).



 $x \circ y = 01110001_2.$

403

2: **if** *mincluster* = null **return** null:

3: *offs* ← cluster[*mincluster*].min();

• Running time is roughly $2\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case.

10 van Emde Boas Trees

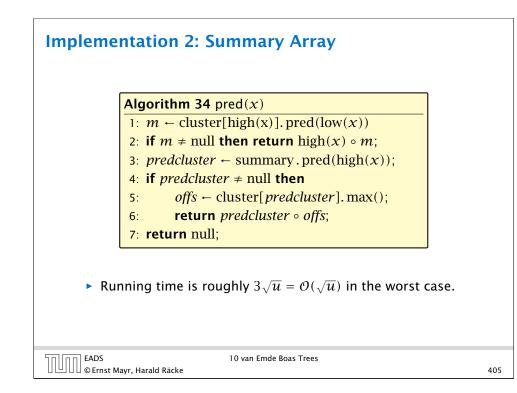
4: **return** *mincluster* • *offs*;

EADS

□][][] © Ernst Mayr, Harald Räcke

7: return null;

• Running time is roughly $3\sqrt{u} = O(\sqrt{u})$ in the worst case.

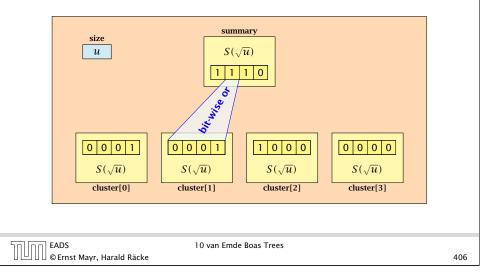


Implementation 3: RecursionWe assume that $u = 2^{2^k}$ for some k.The data-structure S(2) is defined as an array of 2-bits (end of the recursion).

Implementation 3: Recursion

Instead of using sub-arrays, we build a recursive data-structure.

S(u) is a dynamic set data-structure representing u bits:

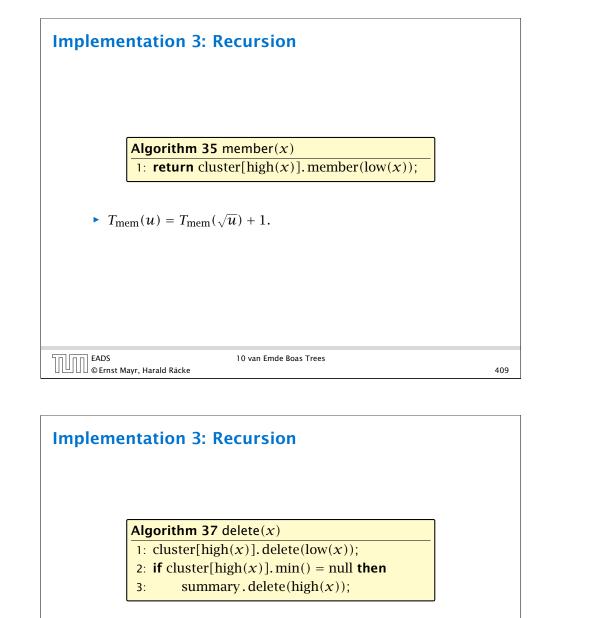


Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an S(4) will contain S(2)'s as sub-datastructures, which are arrays. Hence, a call like cluster[1].min() from within the data-structure S(4) is not a recursive call as it will call the function array.min().

This means that the non-recursive case is been dealt with while initializing the data-structure.



```
• T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1.
```

החוחר	EADS ©Ernst Mayr, Harald Räcke	1
	© Ernst Mayr, Harald Räcke	

Implementation 3: Recursion

• $T_{ins}(u) = 2T_{ins}(\sqrt{u}) + 1.$

Implementation 3: Recursion

Algorithm 38 min()

• $T_{\min}(u) = 2T_{\min}(\sqrt{u}) + 1.$

EADS © Ernst Mayr, Harald Räcke

1: *mincluster* \leftarrow summary.min();

2: **if** *mincluster* = null **return** null;

4: **return** *mincluster* • *offs*;

3: *offs* \leftarrow cluster[*mincluster*].min();

10 van Emde Boas Trees

EADS © Ernst Mayr, Harald Räcke

Algorithm 36 insert(x)

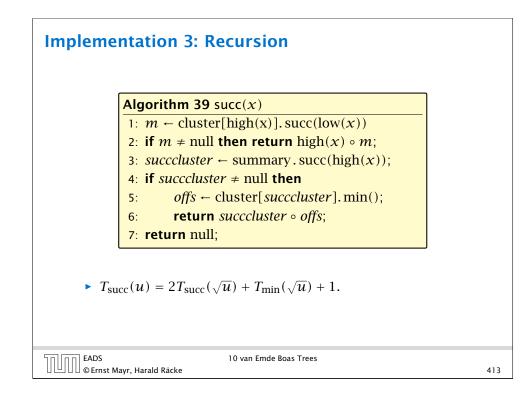
1: cluster[high(x)].insert(low(x));

10 van Emde Boas Trees

410

412

2: summary.insert(high(x));



Implementation 3: Recursion

 $T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$
$$= 2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1 = 2X(\frac{\ell}{2}) + 1$$

Using Master theorem gives $X(\ell) = \mathcal{O}(\ell)$, and hence $T_{\text{ins}}(u) = \mathcal{O}(\log u).$

The same holds for $T_{\max}(u)$ and $T_{\min}(u)$.

 $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$:

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
$$= T_{\text{mem}}(2^{\frac{\ell}{2}}) + 1 = X(\frac{\ell}{2}) + 1 .$$

Using Master theorem gives $X(\ell) = \mathcal{O}(\log \ell)$, and hence $T_{\text{mem}}(u) = \mathcal{O}(\log \log u).$

EADS © Ernst Mayr, Harald Räcke 10 van Emde Boas Trees 414

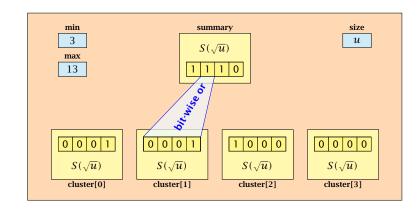
Implementation 3: Recursion $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \leq 2T_{\text{del}}(\sqrt{u}) + \frac{c}{c}\log(u).$ Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then $X(\ell) = T_{del}(2^{\ell}) = T_{del}(u) = 2T_{del}(\sqrt{u}) + c \log u$ $= 2T_{\text{del}}(2^{\frac{\ell}{2}}) + c\ell = 2X(\frac{\ell}{2}) + c\ell$. Using Master theorem gives $X(\ell) = \Theta(\ell \log \ell)$, and hence $T_{\text{del}}(u) = \mathcal{O}(\log u \log \log u).$ The same holds for $T_{\text{pred}}(u)$ and $T_{\text{succ}}(u)$.

EADS 10 van Emde Boas Trees ∐|∐∐©Ernst Mayr, Harald Räcke

EADS

©Ernst Mayr, Harald Räcke

Implementation 4: van Emde Boas Trees



- ► The bit referenced by min is **not** set within sub-datastructures.
- ▶ The bit referenced by max is set within sub-datastructures (if max \neq min).

	10 van Emde Boas Trees	
🛛 🛄 🖓 🕼 © Ernst Mayr, Harald Räcke		417

Implementation 4: van Emde Boas Trees	
Algorithm 40 max() 1: return max;	
Algorithm 41 min() 1: return min;	
 Constant time. 	
EADS 10 van Emde Boas Trees © Ernst Mayr, Harald Räcke	419

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- $\min = \max \neq \text{null}$ means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting $\min = \max = x$.
- We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

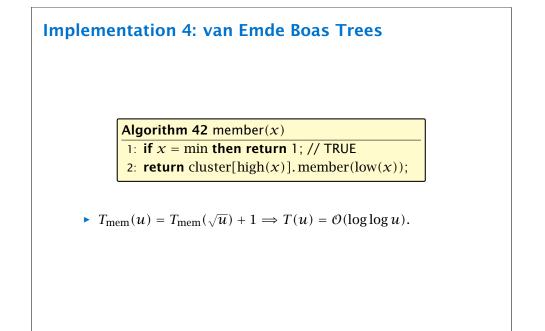
החה	EADS © Ernst Mayr, Harald Räcke
	© Ernst Mayr, Harald Räcke

EADS

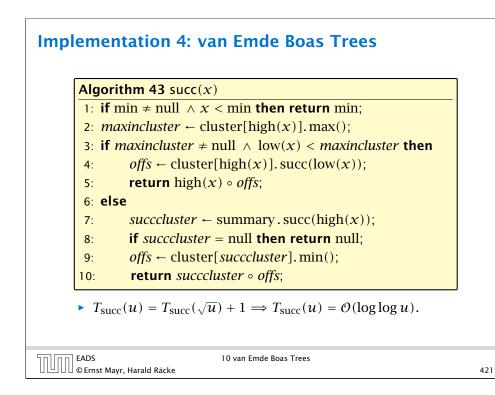
EAUS © Ernst Mayr, Harald Räcke

5

10 van Emde Boas Trees



10 van Emde Boas Trees



Implementation 4: van Emde Boas Trees

Note that the recusive call in Line 7 takes constant time as the if-condition in Line 5 ensures that we are inserting in an empty sub-tree.

The only non-constant recursive calls are the call in Line 6 and in Line 9. These are mutually exclusive, i.e., only one of these calls will actually occur.

From this we get that $T_{ins}(u) = T_{ins}(\sqrt{u}) + 1$.

Implementation 4: van Emde Boas Trees

		_
Algo	rithm 44 insert(x)	
1: if	min = null then	
2:	$\min = x; \max = x;$	
3: el	se	
4:	if $x < \min$ then exchange x and min;	
5:	if cluster[high(x)].min = null; then	
6:	summary.insert(high(x));	
7:	cluster[high(x)].insert(low(x));	
8:	else	
9:	cluster[high(x)].insert(low(x));	
10:	if $x > \max$ then $\max = x$;	
$T_{\rm ins}(u$	$= T_{ins}(\sqrt{u}) + 1 \Longrightarrow T_{ins}(u) = \mathcal{O}(\log \log u).$	
)S rnst Mayr, H	10 van Emde Boas Trees Iarald Räcke	422

Implementation 4: van Emde Boas Trees

 \mathbb{N}

EADS

© Ernst Mayr, Harald Räcke

Assumes that x is contained in the structure.

Algor	ithm 45 delete(x)
1: if	min = max then
2: $\min = \operatorname{null}; \max = \operatorname{null};$	
3: el	se
4:	if $x = \min$ then find new minimum
5:	<i>firstcluster</i> ← summary.min();
6:	<pre>offs</pre>
7:	$x \leftarrow firstcluster \circ offs;$
8:	$\min \leftarrow x;$
9:	cluster[high(x)].delete(low(x)); delete
	continued

Implementation 4: van Emde Boas Trees

Algor	Tithm 45 delete (x)	
	continued	fix maximum
10:	if cluster[high(x)].min() = null	then
11:	summary.delete(high (x));	
12:	if $x = \max$ then	
13:	<i>summax</i> – summary.ma	ax();
14:	if <i>summax</i> = null then m	nax ← min;
15:	else	
16:	offs ← cluster[summ	ax].max();
17:	max ← <i>summax</i> ∘ <i>off</i>	s
18:	else	
19:	if $x = \max$ then	
20:	offs \leftarrow cluster[high(x)].	max();
21:	$\max \leftarrow \operatorname{high}(x) \circ offs;$	
EADS © Ernst Mayr, H	10 van Emde Boas Trees	

10 van Emde Boas Trees

Space requirements:

The space requirement fulfills the recurrence

 $S(u) = (\sqrt{u} + 1)S(\sqrt{u}) + \mathcal{O}(\sqrt{u}) .$

- Note that we cannot solve this recurrence by the Master theorem as the branching factor is not constant.
- One can show by induction that the space requirement is S(u) = O(u). Exercise.

Note that only one of the point

Note that only one of the possible recusive calls in Line 9 and Line 11 in the deletion-algorithm may take non-constant time.

To see this observe that the call in Line 11 only occurs if the cluster where x was deleted is now empty. But this means that the call in Line 9 deleted the last element in cluster[high(x)]. Such a call only takes constant time.

Hence, we get a recurrence of the form

Implementation 4: van Emde Boas Trees

$$T_{\text{del}}(u) = T_{\text{del}}(\sqrt{u}) + c$$
.

This gives $T_{del}(u) = O(\log \log u)$.

רח EADS	10 van Emde Boas Trees	
🛛 🛄 🗋 🖉 Ernst Mayr, Harald Räcke		426

Let the "real" recurrence relation be

$$S(k^2) = (k+1)S(k) + c_1 \cdot k; S(4) = c_2$$

• Replacing S(k) by $R(k) := S(k)/c_2$ gives the recurrence

 $R(k^2) = (k+1)R(k) + ck; R(4) = 1$

where $c = c_1/c_2 < 1$.

- Now, we show $R(k) \le k 2$ for squares $k \ge 4$.
 - Obviously, this holds for k = 4.
 - For $k = \ell^2 > 4$ with ℓ integral we have

$$R(k) = (1 + \ell)R(\ell) + c\ell$$

$$\leq (1 + \ell)(\ell - 2) + \ell \leq k - 2$$

• This shows that R(k) and, hence, S(k) grows linearly.

EADS ©Ernst Mayr, Harald Räcke	10 van Emde Boas Trees
🛛 🕒 🛛 🖉 Ernst Mayr, Harald Räcke	

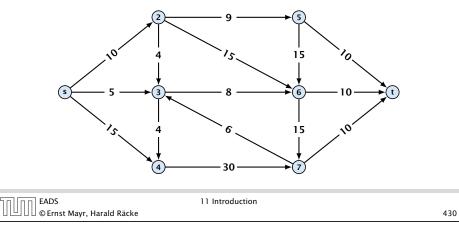
427

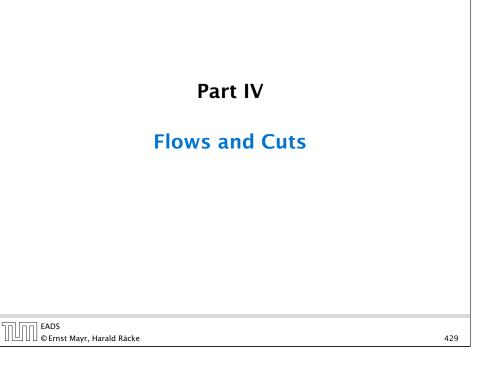


11 Introduction

Flow Network

- directed graph G = (V, E); edge capacities c(e)
- two special nodes: source s; target t;
- no edges entering s or leaving t;
- at least for now: no parallel edges;





Cuts

Definition 43

An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \setminus A$.

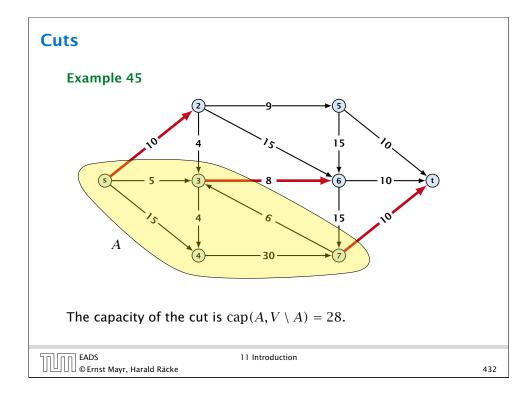
Definition 44 The capacity of a cut *A* is defined as

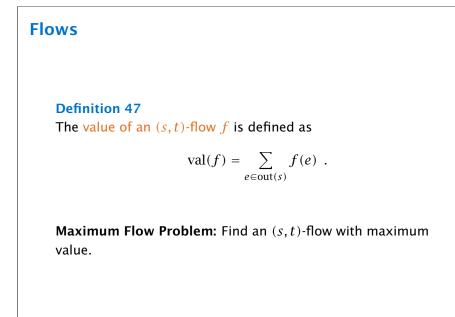
$$\operatorname{cap}(A, V \setminus A) := \sum_{e \in \operatorname{out}(A)} c(e)$$
,

where out(A) denotes the set of edges of the form $A \times V \setminus A$ (i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum capacity.

EADS © Ernst Mayr, Harald Räcke





EADS © Ernst Mayr, Harald Räcke	11 Introduction
🛛 🕒 🖓 🕼 © Ernst Mayr, Harald Räcke	

434

Flows

Definition 46

An (s, t)-flow is a function $f : E \mapsto \mathbb{R}^+$ that satisfies

1. For each edge *e*

$$0 \le f(e) \le c(e)$$

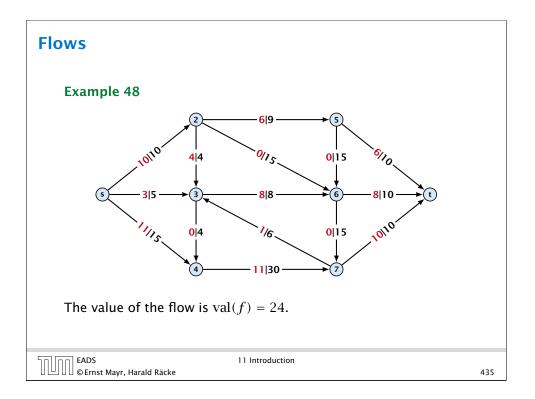
(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{e \in \text{out}(v)} f(e) = \sum_{e \in \text{into}(v)} f(e) .$$

(flow conservation constraints)

הח [הה] EADS	11 Introduction	
UUU©Ernst Mayr, Harald Räcke		433



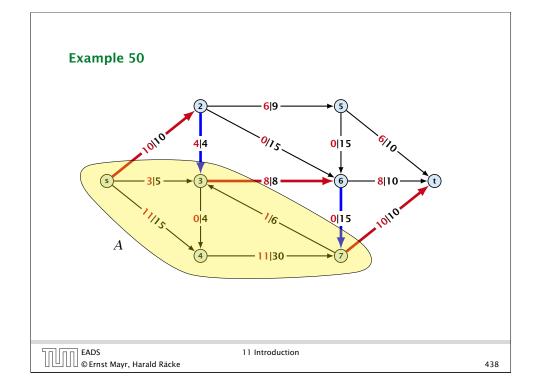
Flows

Lemma 49 (Flow value lemma)

Let f a flow, and let $A \subseteq V$ be an (s,t)-cut. Then the net-flow across the cut is equal to the amount of flow leaving s, i.e.,

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e)$$

	11 Introduction	
🛛 🛄 🖓 🖉 Ernst Mayr, Harald Räcke		436



Proof.

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(s)} f(e)$$
$$= \sum_{e \in \operatorname{out}(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in \operatorname{out}(v)} f(e) - \sum_{e \in \operatorname{in}(v)} f(e) \right)$$
$$= \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e)$$

The last equality holds since every edge with both end-points in A contributes negatively as well as positively to the sum in Line 2. The only edges whose contribution doesn't cancel out are edges leaving or entering A.

	11 Introduction	
EADS © Ernst Mayr, Harald Räcke		437

Corollary 51

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

 $\operatorname{val}(f) = \operatorname{cap}(A, V \setminus A).$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f' with larger value. Then

$$cap(A, V \setminus A) < val(f')$$

$$= \sum_{e \in out(A)} f'(e) - \sum_{e \in into(A)} f'(e)$$

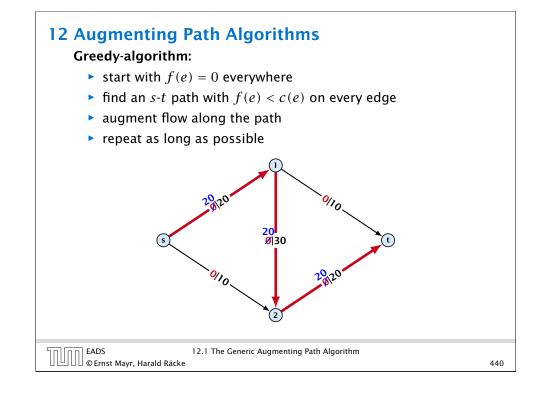
$$\leq \sum_{e \in out(A)} f'(e)$$

$$\leq cap(A, V \setminus A)$$

$$I1 \text{ Introduction}$$

$$I1 \text{ Introduction}$$

439



Augmenting Path Algorithm

Definition 52

An augmenting path with respect to flow f, is a path from s to t in the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 46 FordFulkerson(G = (V, E, c))

1: Initialize $f(e) \leftarrow 0$ for all edges.

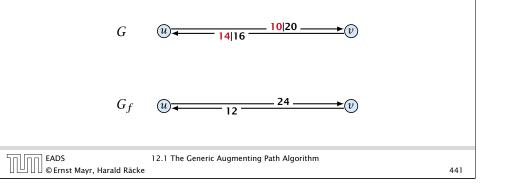
2: while \exists augmenting path p in G_f do

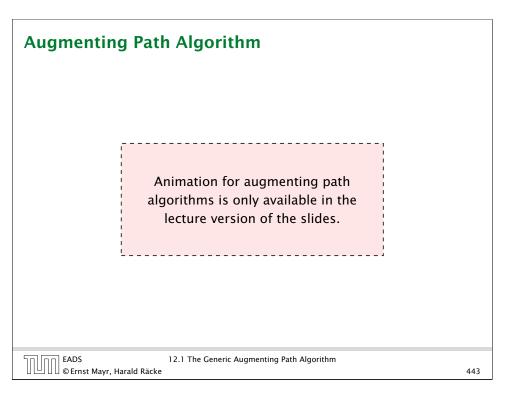
3: augment as much flow along p as possible.

The Residual Graph

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- G_f has edge e'_1 with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e'_2 with with capacity $\max\{0, c(e_2) - f(e_2) + f(e_1)\}$.





Augmenting Path Algorithm

Theorem 53

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 54

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- 1. There exists a cut A, B such that val(f) = cap(A, B).
- **2.** Flow f is a maximum flow.
- **3.** There is no augmenting path w.r.t. f.

_	

444

||||||||

12.1 The Generic Augmenting Path Algorithm

Augmenting Path Algorithm $\operatorname{val}(f) = \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e)$ $= \sum c(e)$ $e \in \text{out}(A)$ $= \operatorname{cap}(A, V \setminus A)$ This finishes the proof.

Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

EADS	12.1	The G
© Ernst Mayr, Harald Räcke		

Augmenting Path Algorithm

 $1. \Rightarrow 2.$ This we already showed.

$2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

$3. \Rightarrow 1.$

EADS

- Let *f* be a flow with no augmenting paths.
- Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.
- Since there is no augmenting path we have $s \in A$ and $t \notin A$.

EADS © Ernst Mayr, Harald Räcke	12.1 The Generic Augmenting Path Algorithm	
UUUU©Ernst Mayr, Harald Räcke		445

Analysis Assumption: All capacities are integers between 1 and *C*. Invariant: Every flow value f(e) and every residual capacity $c_f(e)$ remains integral troughout the algorithm.

EADS 12.1 The Generic Augmenting Path Algorithm 🗒 🗄 🖉 © Ernst Mayr, Harald Räcke

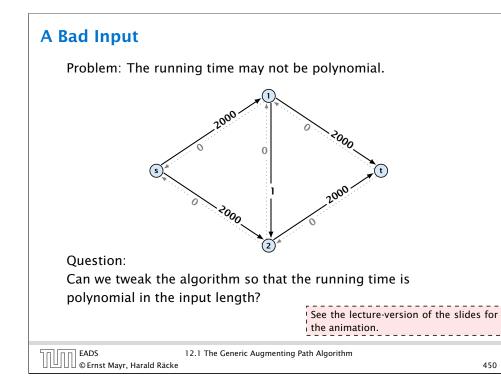
Lemma 55

The algorithm terminates in at most $val(f^*) \le nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time O(m). This gives a total running time of O(nmC).

Theorem 56

If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

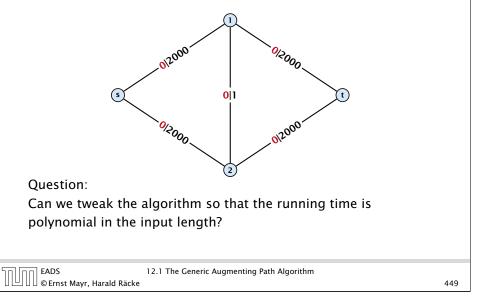
EADS © Ernst Mayr, Harald Räcke	12.1 The Generic Augmenting Path Algorithm

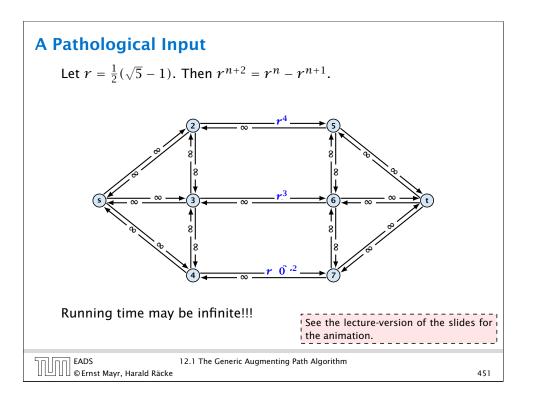


A Bad Input

448

Problem: The running time may not be polynomial.





How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

EADS	12.1 The Generic Augmenting Path Algorithm	
🛛 🛄 🗍 🖉 Ernst Mayr, Harald Räcke		452

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 59

The shortest augmenting path algorithm performs at most O(mn) augmentations. This gives a running time of $O(m^2n)$.

Proof.

- We can find the shortest augmenting paths in time O(m) via BFS.
- O(m) augmentations for paths of exactly k < n edges.

Overview: Shortest Augmenting Paths

Lemma 57

The length of the shortest augmenting path never decreases.

Lemma 58

After at most O(m) augmentations, the length of the shortest augmenting path strictly increases.

EADS © Ernst Mayr, Harald Räcke 12.2 Shortest Augmenting Paths

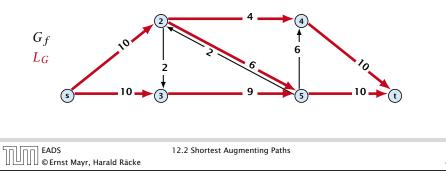
453

Shortest Augmenting Paths

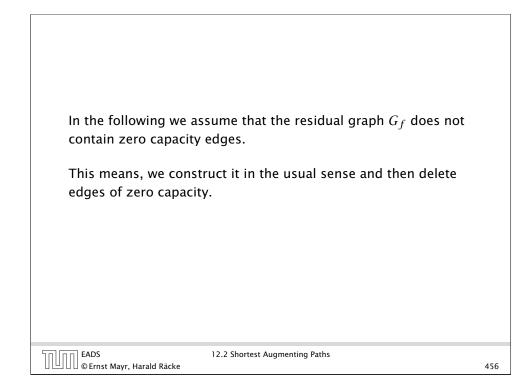
Define the level $\ell(v)$ of a node as the length of the shortest *s*-*v* path in G_f .

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u, v) with $\ell(v) = \ell(u) + 1$.

A path P is a shortest s-u path in G_f if it is a an s-u path in L_G .



454



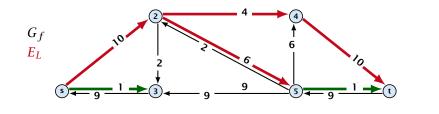
Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An *s*-*t* path in G_f that does use edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L .



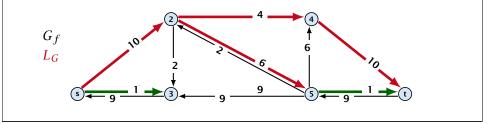
Shortest Augmenting Path

First Lemma:

The length of the shortest augmenting path never decreases.

- ► After an augmentation the following changes are done in *G*_{*f*}.
- Some edges of the chosen path may be deleted (bottleneck edges).
- Back edges are added to all edges that don't have back edges so far.

These changes cannot decrease the distance between s and t.



Shortest Augmenting Paths

Theorem 60

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. Each augmentation can be performed in time $\mathcal{O}(m)$.

Theorem 61 (without proof)

There exist networks with $m = \Theta(n^2)$ that require O(mn) augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a maximum flow.

Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $\mathcal{O}(mn^2)$ by improving the running time for finding an augmenting path (currently we assume $\mathcal{O}(m)$ per augmentation for this).

EADS © Ernst Mayr, Harald Räcke 12.2 Shortest Augmenting Paths

460

Suppose that the initial distance between s and t in G_f is k.

 E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_L .

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from E_L .

Shortest Augmenting Paths

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest *s*-*t* path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L .

When E_L does not contain an *s*-*t* path anymore the distance between *s* and *t* strictly increases.

Note that E_L is not the set of edges of the level graph but a subset of level-graph edges.

EADS © Ernst Mayr, Harald Räcke

EADS

|||∐∐∐©Ernst Mayr, Harald Räcke

12.2 Shortest Augmenting Paths

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most O(mn), since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time O(n).

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}(mn^2)$.

EADS 12.2 © Ernst Mayr, Harald Räcke

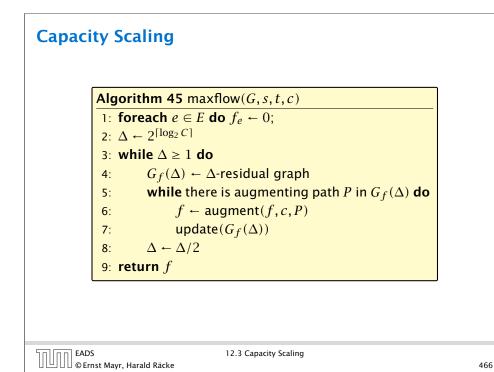
How to choose augmenting paths?

- ▶ We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

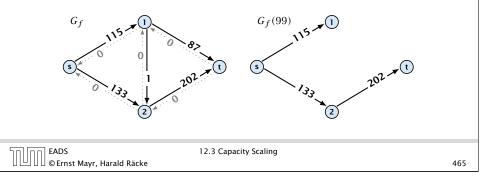
רח (הה) EADS	12.3 Capacity Scaling	
UUU © Ernst Mayr, Harald Räcke		464



Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .



Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

nn EADS

© Ernst Mayr, Harald Räcke

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore

12.3 Capacity Scaling

this means we have a maximum flow.

Capacity Scaling

Lemma 62 *There are* $\lceil \log C \rceil$ *iterations over* Δ *.* **Proof:** obvious.

Lemma 63

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + m\Delta$.

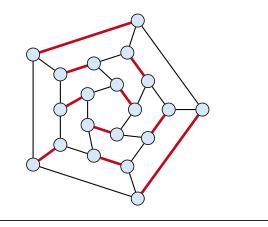
Proof: less obvious, but simple:

- There must exist an *s*-*t* cut in $G_f(\Delta)$ of zero capacity.
- In G_f this cut can have capacity at most $m\Delta$.
- This gives me an upper bound on the flow that I can still add.

EADS © Ernst Mayr, Harald Räcke	12.3 Capacity Scaling	

Matching

- Input: undirected graph G = (V, E).
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



Capacity Scaling

Lemma 64

There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- $\operatorname{val}(f^*) \leq \operatorname{val}(f) + 2m\Delta$
- Each augmentation increases flow by Δ .

Theorem 65

We need $O(m \log C)$ augmentations. The algorithm can be implemented in time $O(m^2 \log C)$.

EADS ©Ernst Mayr, Harald Räcke

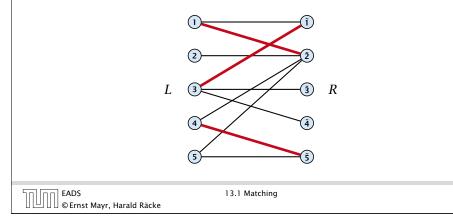
468

12.3 Capacity Scaling

469

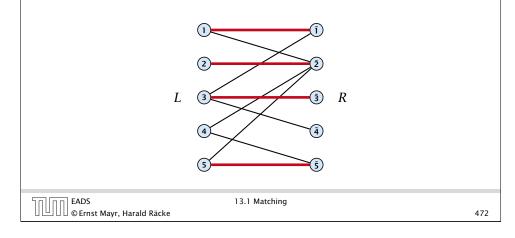
Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



Bipartite Matching

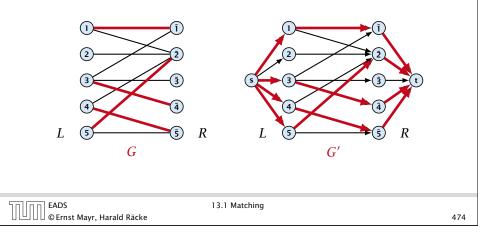
- Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



Proof

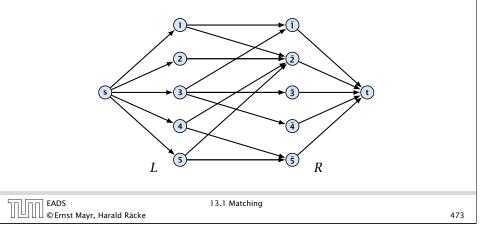
Max cardinality matching in $G \leq$ value of maxflow in G'

- Given a maximum matching *M* of cardinality *k*.
- Consider flow *f* that sends one unit along each of *k* paths.
- f is a flow and has cardinality k.



Maxflow Formulation

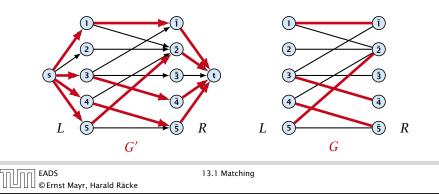
- ► Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- ► Direct all edges from *L* to *R*.
- Add source *s* and connect it to all nodes on the left.
- Add *t* and connect all nodes on the right to *t*.
- All edges have unit capacity.



Proof

Max cardinality matching in $G \ge$ value of maxflow in G'

- Let f be a maxflow in G' of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- Consider M= set of edges from L to R with f(e) = 1.
- Each node in L and R participates in at most one edge in M.
- |M| = k, as the flow must use at least k middle edges.



13.1 Matching

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.

EADS ©Ernst Mayr, Harald Räcke	13.1 Matching

Baseball Elimination	
 Formal definition of the problem: Given a set S of teams, and one specific team z ∈ S. Team x has already won w_x games. Team x still has to play team y, r_{xy} times. Does team z still have a chance to finish with the most number of wins. 	
EADS 13.2 Baseball Elimination	478

Baseball Elimination

team	wins	losses	remaining games			
i	w_i	ℓ_i	Atl	Phi	NY	Mon
Atlanta	83	71	_	1	6	1
Philadelphia	80	79	1	-	0	2
New York	78	78	6	0	-	0
Montreal	77	82	1	2	0	-

Which team can end the season with most wins?

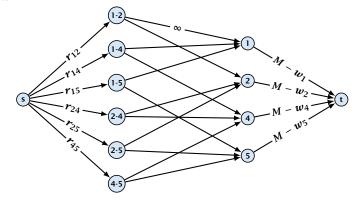
- Montreal is eliminated, since even after winning all remaining games there are only 80 wins.
- But also Philadelphia is eliminated. Why?

EADS © Ernst Mayr, Harald Räcke	13.2 Baseball Elimination	
UUUC © Ernst Mayr, Harald Räcke		477

Baseball Elimination

476

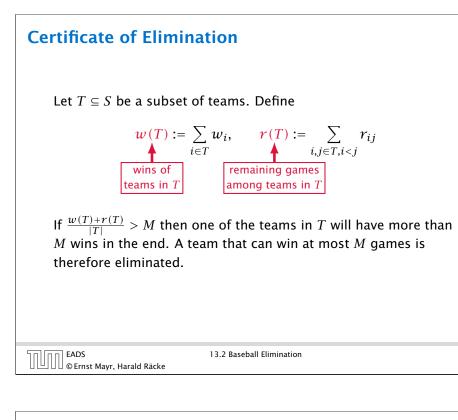
Flow network for z = 3. *M* is number of wins Team 3 can still obtain.

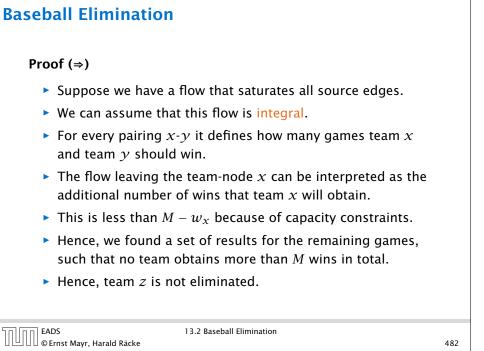


Idea. Distribute the results of remaining games in such a way that no team gets too many wins.

13.2 Baseball Elimination

EADS ©Ernst Mayr, Harald Räcke





Theorem 66

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i \in S \setminus \{z\}, i < j} \gamma_{ij}$.

Proof (⇐)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for a node $x \cdot y$ not both team-nodes x and y are in T, then $x \cdot y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\}) > \operatorname{cap}(A, V \setminus A)$$

$$\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$$

$$\geq r(S \setminus \{z\}) - r(T) + |T|M - w(T)$$

► This gives M < (w(T) + r(T))/|T|, i.e., z is eliminated.

Project Selection

EADS

480

Project selection problem:

- Set *P* of possible projects. Project *v* has an associated profit p_{ν} (can be positive or negative).
- Some projects have requirements (taking course EA2) requires course EA1).
- Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- A subset A of projects is feasible if the prerequisites of every project in A also belong to A.

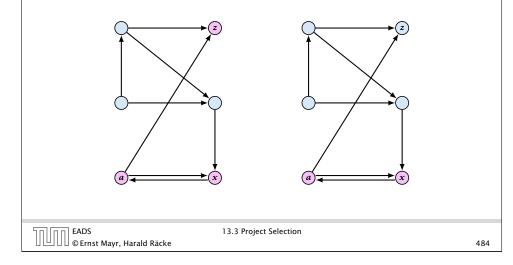
Goal: Find a feasible set of projects that maximizes the profit.

13.3 Project Selection

Project Selection

The prerequisite graph:

- $\{x, a, z\}$ is a feasible subset.
- $\{x, a\}$ is infeasible.

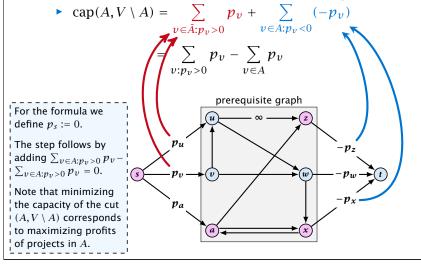


Theorem 67

A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

Proof.

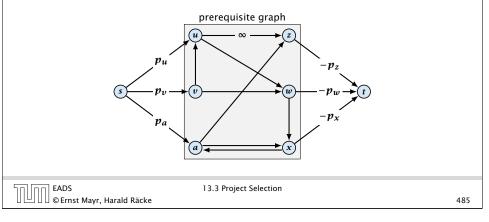
• *A* is feasible because of capacity infinity edges.

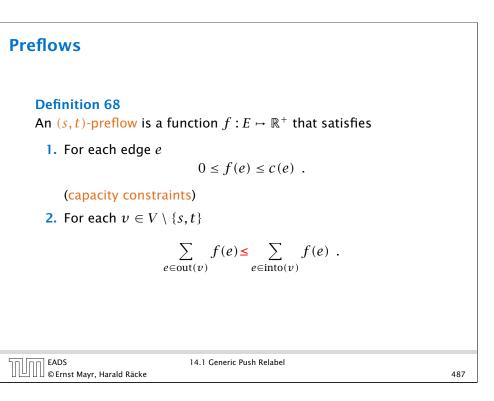


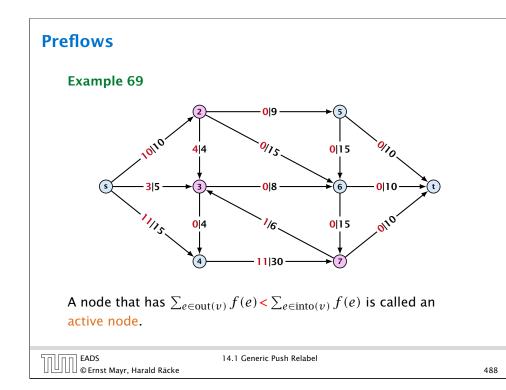
Project Selection

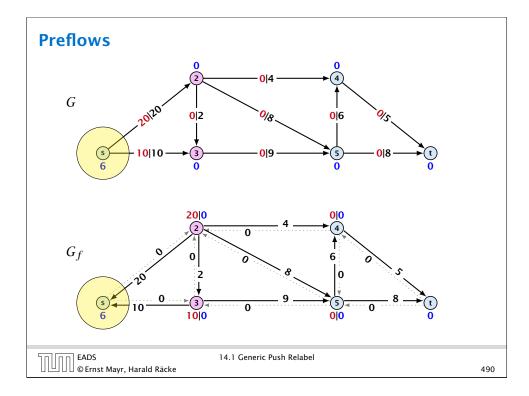
Mincut formulation:

- Edges in the prerequisite graph get infinite capacity.
- Add edge (s, v) with capacity pv for nodes v with positive profit.
- Create edge (v, t) with capacity -pv for nodes v with negative profit.









Preflows

Definition:

A labelling is a function $\ell: V \to \mathbb{N}$. It is valid for preflow f if

- ℓ(u) ≤ ℓ(v) + 1 for all edges in the residual graph G_f (only non-zero capacity edges!!!)
- ▶ $\ell(s) = n$
- ▶ $\ell(t) = 0$

Intuition:

The labelling can be viewed as a height function. Whenever the height from node u to node v decreases by more than 1 (i.e., it goes very steep downhill from u to v), the corresponding edge must be saturated.

	14.1 Generic Push Relabel	
🛛 🛄 🖓 🕼 © Ernst Mayr, Harald Räcke		489

Preflows

Lemma 70

A *preflow* that has a valid labelling saturates a cut.

Proof:

- There are n nodes but n + 1 different labels from $0, \ldots, n$.
- ► There must exist a label d ∈ {0,..., n} such that none of the nodes carries this label.
- Let $A = \{v \in V \mid \ell(v) > d\}$ and $B = \{v \in V \mid \ell(v) < d\}$.
- We have s ∈ A and t ∈ B and there is no edge from A to B in the residual graph G_f; this means that (A, B) is a saturated cut.

Lemma 71

A flow that has a valid labelling is a maximum flow.

Push Relabel Algorithms

Idea:

- start with some preflow and some valid labelling
- successively change the preflow while maintaining a valid labelling
- stop when you have a flow (i.e., no more active nodes)

Note that this is somewhat dual to an augmenting path algorithm. The former maintains the property that it has a feasible flow. It successively changes this flow until it saturates some cut in which case we conclude that the flow is maximum. A preflow push algorithm maintains the property that it has a saturated cut. The preflow is changed iteratively until it fulfills conservation constraints in which case we can conclude that we have a maximum flow.

החוחר	EADS © Ernst Mayr, Harald	
	© Ernst Mayr, Harald	Räcke

14.1 Generic Push Relabel

492

Push Relabel Algorithms

The relabel operation

Consider an active node u that does not have an outgoing admissable arc.

Increasing the label of u by 1 results in a valid labelling.

- Edges (w, u) incoming to u still fulfill their constraint $\ell(w) \le \ell(u) + 1$.
- An outgoing edge (u, w) had ℓ(u) < ℓ(w) + 1 before since it was not admissable. Now: ℓ(u) ≤ ℓ(w) + 1.

Changing a Preflow

An arc (u, v) with $c_f(u, v) > 0$ in the residual graph is admissable if $\ell(u) = \ell(v) + 1$ (i.e., it goes downwards w.r.t. labelling ℓ).

The push operation

Consider an active node u with excess flow $f(u) = \sum_{e \in into(u)} f(e) - \sum_{e \in out(u)} f(e)$ and suppose e = (u, v)is an admissable arc with residual capacity $c_f(e)$.

We can send flow $\min\{c_f(e), f(u)\}$ along e and obtain a new preflow. The old labelling is still valid (!!!).

- saturating push: min{f(u), c_f(e)} = c_f(e)
 the arc e is deleted from the residual graph
- non-saturating push: min{f(u), c_f(e)} = f(u) the node u becomes inactive

Push Relabel Algorithms

Intuition:

We want to send flow downwards, since the source has a height/label of n and the target a height/label of 0. If we see an active node u with an admissible arc we push the flow at u towards the other end-point that has a lower height/label. If we do not have an admissible arc but excess flow into u it should roughly mean that the level/height/label of u should rise. (If we consider the flow to be water than this would be natural).

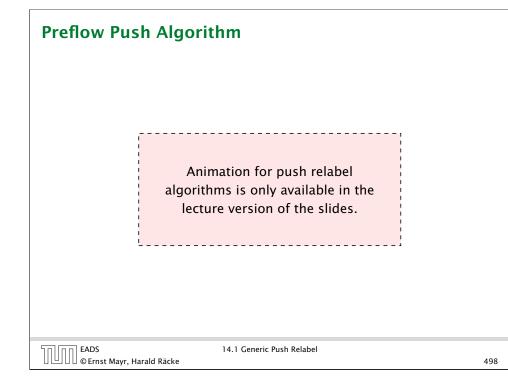
Note that the above intuition is very incorrect as the labels are integral, i.e., they cannot really be seen as the height of a node.

Reminder

- In a preflow nodes may not fulfill conserveration constraints but a node may have more incoming flow than outgoing flow.
- Such a node is called active.
- ► A labelling is valid if for every edge (u, v) in the residual graph $\ell(u) \leq \ell(v) + 1$.
- An arc (u, v) in residual graph is admissable if $\ell(u) = \ell(v) + 1$.
- A saturation push along *e* pushes an amount of *c*(*e*) flow along the edge, thereby saturating the edge (and making it dissappear from the residual graph).
- A non-saturating push along e = (u, v) pushes a flow of f(u), where f(u) is the excess flow of u. This makes u inactive.

Soloo EADS	14.1 Generic Push Relabel
EADS © Ernst Mayr, Harald Räcke	
L L L L S LITIST May1, Haralu Kacke	

496



Push Relabel Algorithms

Algorithm 46 maxflow(G, s, t, c)

- 1: find initial preflow f
- 2: **while** there is active node *u* **do**
- 3: **if** there is admiss. arc e out of u **then**
- 4: push(G, e, f, c)
- 5: **else**

6: relabel(u)

7: return f

In the following example we always stick to the same active node u until it becomes inactive but this is not required.

EADS © Ernst Mayr, Harald Räcke 14.1 Generic Push Relabel

497

Analysis

Lemma 72

An active node has a path to *s* in the residual graph.

Proof.

- ► Let *A* denote the set of nodes that can reach *s*, and let *B* denote the remaining nodes. Note that $s \in A$.
- ► In the following we show that a node $b \in B$ has excess flow f(b) = 0 which gives the lemma.
- In the residual graph there are no edges into A, and, hence, no edges leaving A/entering B can carry any flow.
- Let $f(B) = \sum_{v \in B} f(v)$ be the excess flow of all nodes in *B*.

Let $f : E \to \mathbb{R}_0^+$ be a preflow. We introduce the notation

$$f(x, y) = \begin{cases} 0 & (x, y) \notin E\\ f((x, y)) & (x, y) \in E \end{cases}$$

We have

$$\begin{split} f(B) &= \sum_{b \in B} f(b) \\ &= \sum_{b \in B} \left(\sum_{v \in V} f(v, b) - \sum_{v \in V} f(b, v) \right) \\ &= \sum_{b \in B} \left(\sum_{v \in A} f(v, b) + \sum_{v \in B} f(v, b) - \sum_{v \in A} f(b, v) - \sum_{v \in B} f(b, v) \right) \\ &= -\sum_{b \in B} \sum_{v \in A} f(b, v) \\ &\leq 0 \end{split}$$

Hence, the excess flow f(b) must be 0 for every node $b \in B$.

	14.1 Generic Push Relabel	
EADS © Ernst Mayr, Harald Räcke	14.1 Generic Push Relabel	500

Analysis

Lemma 75

The number of saturating pushes performed is at most O(mn).

Proof.

- Suppose that we just made a saturating push along (u, v).
- Hence, the edge (u, v) is deleted from the residual graph.
- For the edge to appear again, a push from v to u is required.
- Currently, $\ell(u) = \ell(v) + 1$, as we only make pushes along admissable edges.
- For a push from v to u the edge (v, u) must become admissable. The label of v must increase by at least 2.
- Since the label of v is at most 2n − 1, there are at most n pushes along (u, v).

Analysis

Lemma 73

The label of a node cannot become larger than 2n - 1.

Proof.

▶ When increasing the label at a node *u* there exists a path from *u* to *s* of length at most *n* − 1. Along each edge of the path the height/label can at most drop by 1, and the label of the source is *n*.

Lemma 74

There are only $\mathcal{O}(n^2)$ relabel operations.

EADS 14.1 Generic Push Relabel © Ernst Mayr, Harald Räcke

501

Lemma 76

The number of non-saturating pushes performed is at most $O(n^2m)$.

Proof.

- Define a potential function $\Phi(f) = \sum_{\text{active nodes}v} \ell(v)$
- A saturating push increases Φ by ≤ 2n (when the target node becomes active it may contribute at most 2n to the sum).
- A relabel increases Φ by at most 1.
- A non-saturating push decreases Φ by at least 1 as the node that is pushed from becomes inactive and has a label that is strictly larger than the target.
- Hence,

#non-saturating_pushes \leq #relabels + $2n \cdot$ #saturating_pushes $\leq O(n^2m)$.

Analysis Theorem 77 There is an implementation of the generic push relabel algorithm with running time $\mathcal{O}(n^2m)$. Image: Second Sec

Analysis

For special variants of push relabel algorithms we organize the neighbours of a node into a linked list (possible neighbours in the residual graph G_f). Then we use the discharge-operation:

Algo	rithm 47 discharge(u)
1: W	hile <i>u</i> is active do
2:	$v \leftarrow u.current-neighbour$
3:	if $v = \text{null then}$
4:	relabel(<i>u</i>)
5:	$u.current-neighbour \leftarrow u.neighbour-list-head$
6:	else
7:	if (u, v) admissable then $push(u, v)$
8:	else u.current-neighbour ← v.next-in-list

Note that *u.current-neighbour* is a global variable. It is only changed within the discharge routine, but keeps its value between consecutive calls to discharge.

Analysis

Proof:

For every node maintain a list of admissable edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

- check whether edge (v, u) needs to be added to G_f
- check whether (u, v) needs to be deleted (saturating push)
- check whether u becomes inactive and has to be deleted from the set of active nodes

A relabel at a node u can be performed in time $\mathcal{O}(n)$

- check for all outgoing edges if they become admissable
- check for all incoming edges if they become non-admissable

 EADS
 14.1 Generic Push Relabel

 © Ernst Mayr, Harald Räcke
 505

Lemma 78

If v = null in Line 3, then there is no outgoing admissable edge from u. in the residual graph). For this the label of v needs to be larger than the label of u. Then in order to make (u, v) admiss-

In order for e to become admissable the other end-point say v has to push flow to u (so that the edge (u, v) re-appears in the residual graph). For this the label of v needs to be larger than the label of u. Then in order to make (u, v) admissable the label of u has to increase.

Proof.

504

- While pushing from u the current-neighbour pointer is only advanced if the current edge is not admissable.
- The only thing that could make the edge admissable again would be a relabel at u.
- If we reach the end of the list (v = null) all edges are not admissable.

This shows that discharge(u) is correct, and that we can perform a relabel in line 4.

14.2 Relabel to Front

	n 50 relabel-to-front(G, s, t)
1: initial	ize preflow
2: initial	ize node list L containing $V \setminus \{s, t\}$ in any order
3: forea	ch $u \in V \setminus \{s,t\}$ do
4: <i>u</i>	.current-neighbour ← u.neighbour-list-head
5: <i>u</i> ← <i>L</i>	.head
6: while	$u \neq \text{null } \mathbf{do}$
7: <i>0</i>	$ld\text{-}height \leftarrow \ell(u)$
8: d	ischarge(u)
9: if	$\ell(u) > old\-height$ then // relabel happened
10:	move u to the front of L
11: <i>i</i>	$\iota \leftarrow u.next$

וחל	nnl	EADS
		EADS © Ernst Mayr, Harald Räcke

14.2 Relabel to Front

Proof:

- Initialization:
 - 1. In the beginning s has label $n \ge 2$, and all other nodes have label 0. Hence, no edge is admissable, which means that any ordering L is permitted.
 - 2. We start with *u* being the head of the list; hence no node before *u* can be active

Maintenance:

- Pushes do no create any new admissable edges. Therefore, if discharge() does not relabel u, L is still topologically sorted.
 - After relabeling, u cannot have admissable incoming edges as such an edge (x, u) would have had a difference $\ell(x) - \ell(u) \ge 2$ before the re-labeling (such edges do not exist in the residual graph).

Hence, moving u to the front does not violate the sorting property for any edge; however it fixes this property for all admissable edges leaving u that were generated by the relabeling.

14.2 Relabel to Front

Lemma 79 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant holds.

- 1. The sequence L is topologically sorted w.r.t. the set of admissable edges; this means for an admissable edge (x, y) the node x appears before y in sequence L.
- **2.** No node before u in the list L is active.

EADS ©Ernst Mayr, Harald Räcke 14.2 Relabel to Front

14.2 Relabel to Front

Proof:

508

- Maintenance:
 - 2. If we do a relabel there is nothing to prove because the only node before u'(u) in the next iteration) will be the current u; the discharge(u) operation only terminates when u is not active anymore.

For the case that we do not relabel, observe that the only way a predecessor could be active is that we push flow to it via an admissable arc. However, all admissable arc point to successors of u.

Note that the invariant means that for u = null we have a preflow with a valid labelling that does not have active nodes. This means we have a maximum flow.

14.2 Relabel to Front

Lemma 80

There are at most $\mathcal{O}(n^3)$ calls to discharge(u).

Every discharge operation without a relabel advances u (the current node within list L). Hence, if we have n discharge operations without a relabel we have u = null and the algorithm terminates.

Therefore, the number of calls to discharge is at most $n(\#relabels + 1) = O(n^3)$.

EADS © Ernst Mayr, Harald Räcke

14.2 Relabel to Front

14.2 Relabel to Front

Note that by definition a saturing push operation $(\min\{c_f(e), f(u)\} = c_f(e))$ can at the same time be a non-saturating push operation $(\min\{c_f(e), f(u)\} = f(u))$.

Lemma 82

The cost for all saturating push-operations that are **not** also non-saturating push-operations is only O(mn).

Note that such a push-operation leaves the node u active but makes the edge e disappear from the residual graph. Therefore the push-operation is immediately followed by an increase of the pointer u.current-neighbour.

This pointer can traverse the neighbour-list at most $\mathcal{O}(n)$ times (upper bound on number of relabels) and the neighbour-list has only degree(u) + 1 many entries (+1 for null-entry).

512

14.2 Relabel to Front

Lemma 81

The cost for all relabel-operations is only $\mathcal{O}(n^2)$.

A relabel-operation at a node is constant time (increasing the label and resetting *u.current-neighbour*). In total we have $O(n^2)$ relabel-operations.

EADS ©Ernst Mayr, Harald Räcke 14.2 Relabel to Front

513

14.2 Relabel to Front

Lemma 83

The cost for all non-saturating push-operations is only $\mathcal{O}(n^3)$.

A non-saturating push-operation takes constant time and ends the current call to discharge(). Hence, there are only $\mathcal{O}(n^3)$ such operations.

Theorem 84

The push-relabel algorithm with the rule relabel-to-front takes time $\mathcal{O}(n^3)$.

14.3 Highest label

Algorithm 50 highest-label(*G*, *s*, *t*)

1: initialize preflow

- 2: foreach $u \in V \setminus \{s, t\}$ do
- u.current-neighbour $\leftarrow u.neighbour$ -list-head 3.

4: while \exists active node u do

- select active node u with highest label 5:
- discharge(u)6:

EADS © Ernst Mayr, Harald Räcke
© Ernst Mavr. Harald Räcke

516

14.3 Highest label

Since a discharge-operation is terminated by a non-saturating push this gives an upper bound of $\mathcal{O}(n^3)$ on the number of discharge-operations.

14.3 Highest label

The cost for relabels and saturating pushes can be estimated in exactly the same way as in the case of the generic push-relabel algorithm.

Ouestion:

How do we find the next node for a discharge operation?

14.3 Highest label

Lemma 85

When using highest label the number of non-saturating pushes is only $\mathcal{O}(n^3)$.

A push from a node on level ℓ can only "activate" nodes on levels strictly less than ℓ .

This means, after a non-saturating push from u a relabel is required to make u active again.

Hence, after *n* non-saturating pushes without an intermediate relabel there are no active nodes left.

Therefore, the number of non-saturating pushes is at most $n(\#relabels+1) = \mathcal{O}(n^3).$

14.3 Highest label

nn EADS

© Ernst Mayr, Harald Räcke

Maintain lists L_i , $i \in \{0, ..., 2n\}$, where list L_i contains active nodes with label *i* (maintaining these lists induces only constant additional cost for every push-operation and for every relabel-operation).

After a discharge operation terminated for a node u with label k, traverse the lists $L_k, L_{k-1}, \ldots, L_0$, (in that order) until you find a non-empty list.

Unless the last (non-saturating) push was to s or t the list k-1must be non-empty (i.e., the search takes constant time).

14.3 Highest label

Hence, the total time required for searching for active nodes is at most

 $\mathcal{O}(n^3) + n(\#non-saturating-pushes-to-s-or-t)$

Lemma 86

The number of non-saturating pushes to s or t is at most $\mathcal{O}(n^2)$.

With this lemma we get

Theorem 87

The push-relabel algorithm with the rule highest-label takes time $\mathcal{O}(n^3)$.

EADS © Ernst Mayr, Harald Räcke	14.3 Highest label	

520

522

Mincost Flow

EADS

🛛 © Ernst Mayr, Harald Räcke

Problem Definition:

 $\begin{array}{ll} \min & \sum_{e} c(e) f(e) \\ \text{s.t.} & \forall e \in E: \ 0 \le f(e) \le u(e) \\ & \forall v \in V: \ f(v) = b(v) \end{array}$

15 Mincost Flow

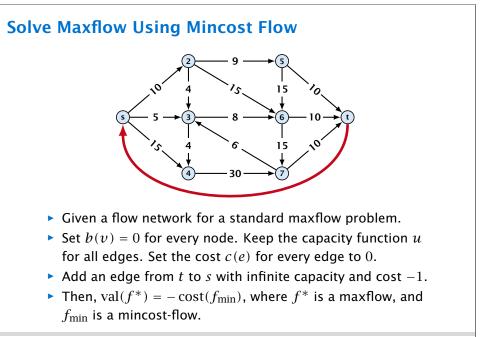
- G = (V, E) is a directed graph.
- $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$ is the capacity function.
- $c: E \to \mathbb{R}$ is the cost function (note that c(e) may be negative).
- $b: V \to \mathbb{R}$, $\sum_{v \in V} b(v) = 0$ is a demand function.

14.3 Highest label

Proof of the Lemma.

- ► We only show that the number of pushes to the source is at most O(n²). A similar argument holds for the target.
- After a node v (which must have ℓ(v) = n + 1) made a non-saturating push to the source there needs to be another node whose label is increased from ≤ n + 1 to n + 2 before v can become active again.
- This happens for every push that v makes to the source. Since, every node can pass the threshold n + 2 at most once, v can make at most n pushes to the source.
- ► As this holds for every node the total number of pushes to the source is at most O(n²).

EADS © Ernst Mayr, Harald Räcke	14.3 Highest label	
🛛 🛄 🖓 🖾 © Ernst Mayr, Harald Räcke		521



EADS © Ernst Mayr, Harald Räcke

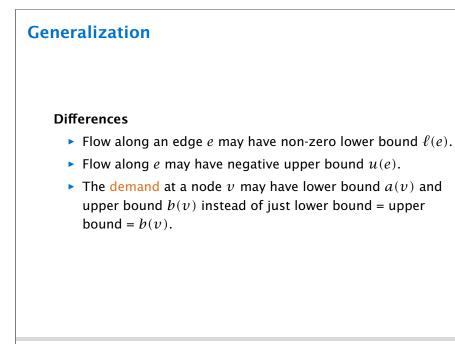
Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

- Given a flow network for a standard maxflow problem, and a value k.
- Set b(v) = 0 for every node apart from s or t. Set b(s) = -k and b(t) = k.
- Set edge-costs to zero, and keep the capacities.
- There exists a maxflow of value k if and only if the mincost-flow problem is feasible.

ر می ر م	EADS © Ernst Mayr, Harald	
	© Ernst Mayr, Harald	Räcke

15 Mincost Flow



Generalization

Our model:

 $\begin{array}{ll} \min & \sum_{e} c(e) f(e) \\ \text{s.t.} & \forall e \in E : \ 0 \le f(e) \le u(e) \\ & \forall v \in V : \ f(v) = b(v) \end{array}$

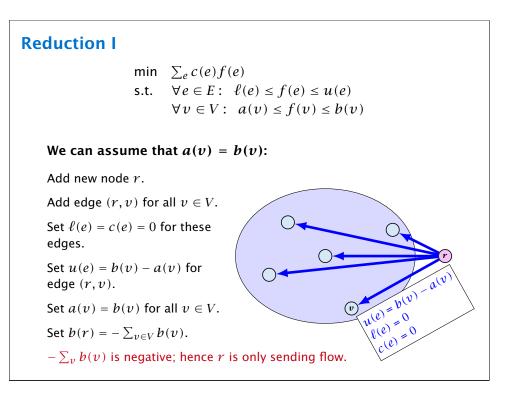
where $b: V \to \mathbb{R}$, $\sum_{v} b(v) = 0$; $u: E \to \mathbb{R}_{0}^{+} \cup \{\infty\}$; $c: E \to \mathbb{R}$;

A more general model?

 $\begin{array}{ll} \min & \sum_{e} c(e) f(e) \\ \text{s.t.} & \forall e \in E : \ \ell(e) \le f(e) \le u(e) \\ & \forall v \in V : \ a(v) \le f(v) \le b(v) \end{array}$

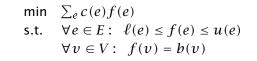
where $a: V \to \mathbb{R}$, $b: V \to \mathbb{R}$; $\ell: E \to \mathbb{R} \cup \{-\infty\}$, $u: E \to \mathbb{R} \cup \{\infty\}$ $c: E \to \mathbb{R}$;

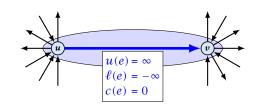
	15 Mincost Flow	
🛛 🛄 🖓 🖾 © Ernst Mayr, Harald Räcke		525



526

Reduction II

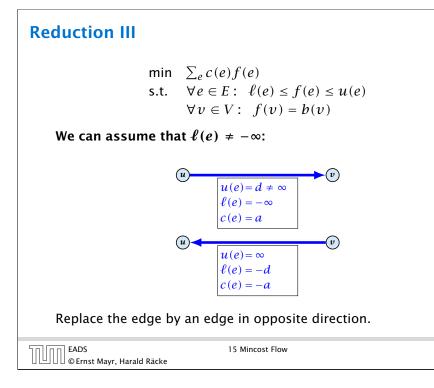




If c(e) = 0 we can contract the edge/identify nodes u and v.

If
$$c(e) \neq 0$$
 we can transform the graph so that $c(e) = 0$.

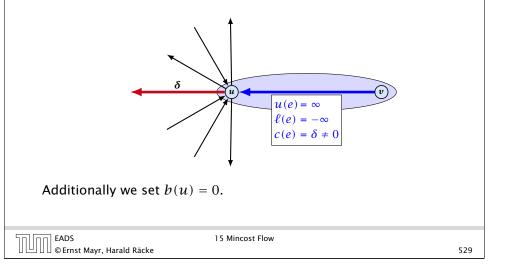
	15 Mincost Flow	
🛛 🛄 🗍 🕼 Ernst Mayr, Harald Räcke		528



530

Reduction II

We can transform any network so that a particular edge has cost c(e) = 0:



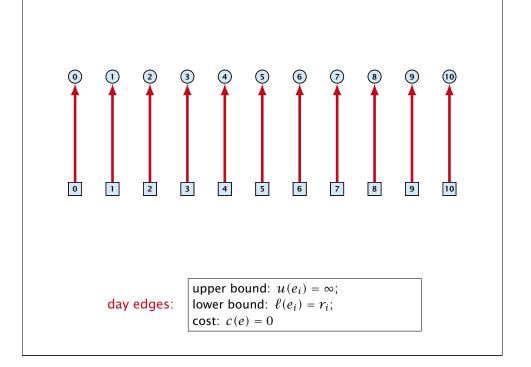
$ \begin{array}{ll} \min & \sum_{e} c(e) f(e) \\ \text{s.t.} & \forall e \in E : \ \ell(e) \leq f(e) \leq u(e) \\ & \forall v \in V : \ f(v) = b(v) \end{array} $	
We can assume that $\ell(e) = 0$:	
$\begin{array}{c} u \\ u(e) \\ \ell(e) = d \neq -\infty \\ c(e) \end{array}$	
$ \begin{array}{c} b(\bar{u}) = d \\ \mu	
The added edges have infinite capacity and cost $c(e)/2$.	

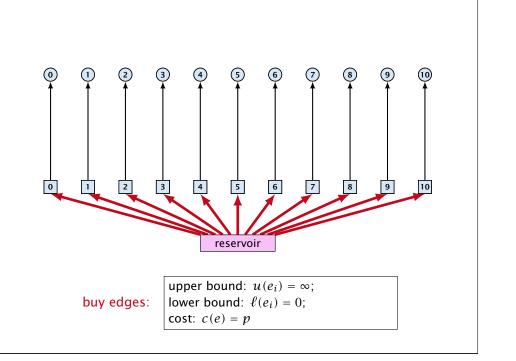
Applications

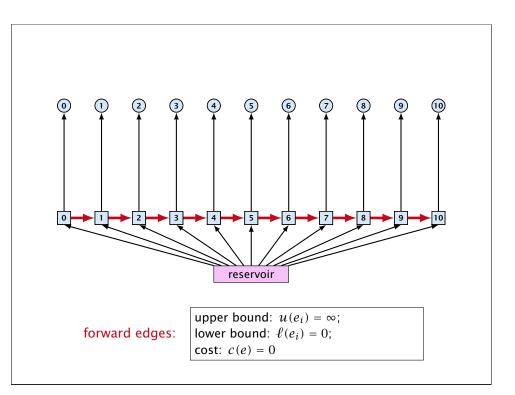
Caterer Problem

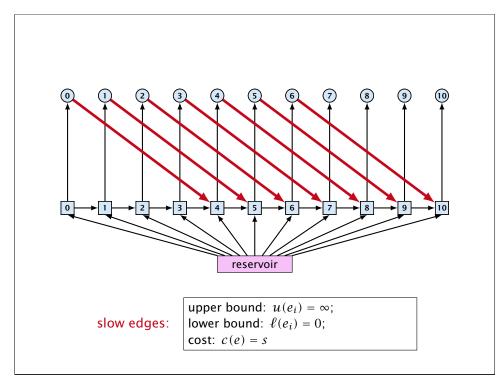
- She needs to supply r_i napkins on N successive days.
- She can buy new napkins at *p* cents each.
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.
- She can use a slow laundry that takes k > m days and costs s cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- Minimize cost.

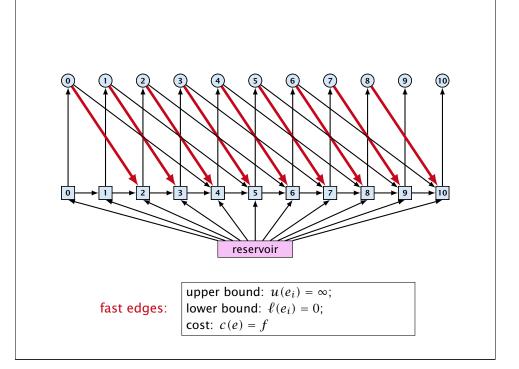
	15 Mincost Flow	
🛛 🕒 🖓 🖉 Ernst Mayr, Harald Räcke		532

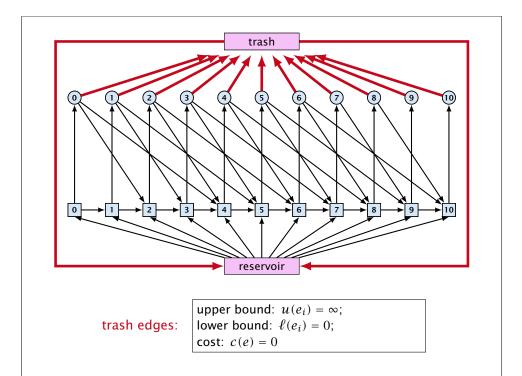


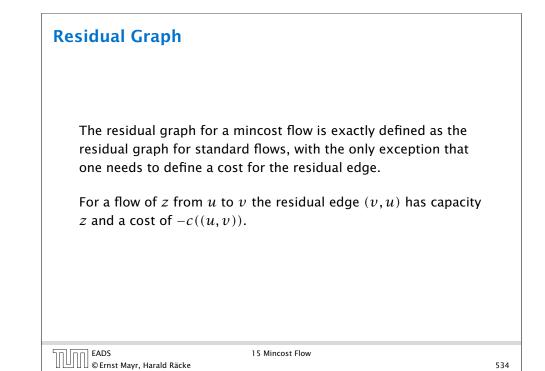












15 Mincost Flow

A circulation in a graph G = (V, E) is a function $f : E \to \mathbb{R}^+$ that has an excess flow f(v) = 0 for every node $v \in V$.

A circulation is feasible if it fulfills capacity constraints, i.e., $f(e) \le u(e)$ for every edge of *G*.

רח EADS	15 Mincost Flow	
EADS © Ernst Mayr, Harald Räcke		

For previous slide: $g = f^* - f$ is obtained by computing $\Delta(e) = f^*(e) - f(e)$ for every edge $e = (u, v)$. If the result is positive set $g((u, v)) = \Delta(e)$ and $g((v, u)) = 0$. Otherwise set $g((u, v)) = 0$ and $g((v, u)) = -\Delta(e)$.	,
EADS 15 Mincost Flow © Ernst Mayr, Harald Räcke	536

Lemma 88

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

⇒ Suppose that g is a feasible circulation of negative cost in the residual graph.

Then f + g is a feasible flow with cost cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

⇐ Let f be a non-mincost flow, and let f* be a min-cost flow.
 We need to show that the residual graph has a feasible circulation with negative cost.

Clearly $f^* - f$ is a circulation of negative cost. One can also easily see that it is feasible for the residual graph. (after sending -f in the residual graph (pushing all flow back) we arrive at the original graph; for this f^* is clearly feasible)

15 Mincost Flow

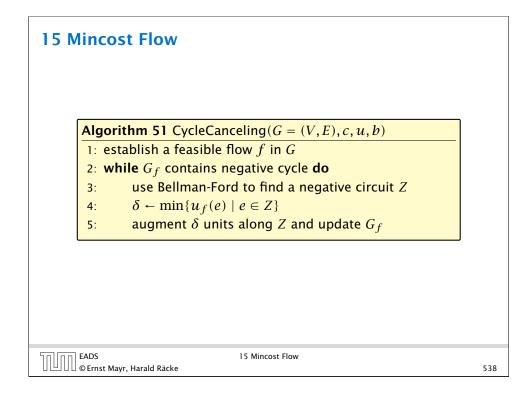
Lemma 89

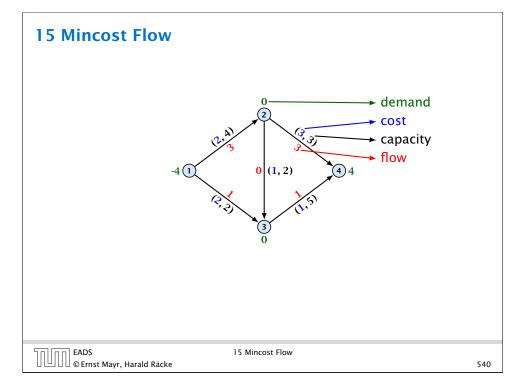
535

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

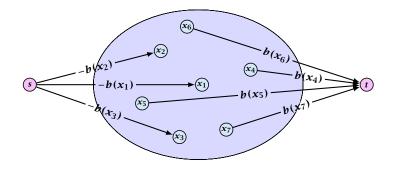
Proof.

- Suppose that we have a negative cost circulation.
- Find directed path only using edges that have non-zero flow.
- If this path has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- > You still have a circulation with negative cost.
- Repeat.



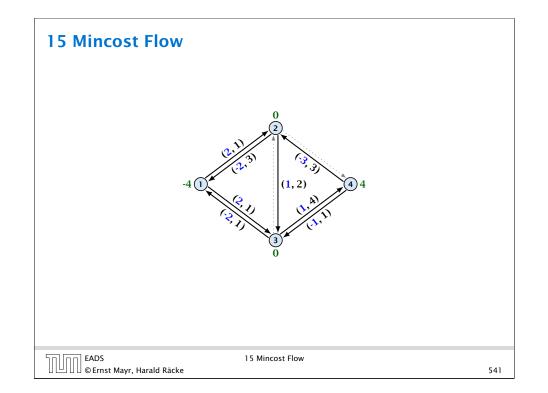


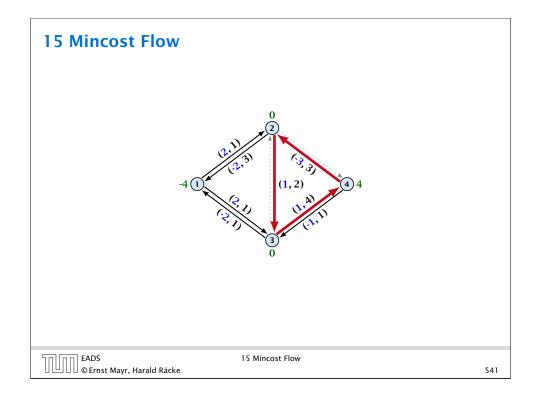
How do we find the initial feasible flow?

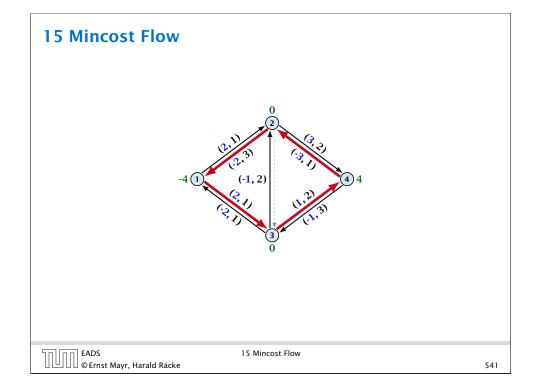


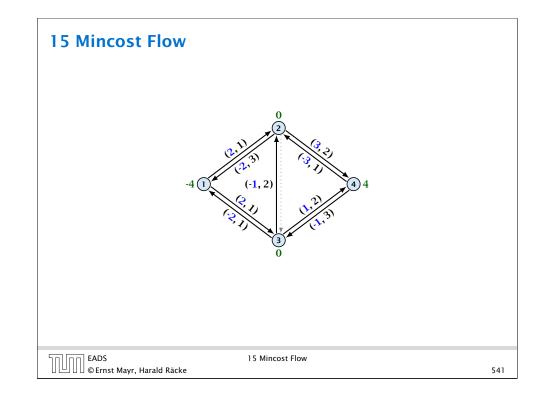
- Connect new node s to all nodes with negative b(v)-value.
- Connect nodes with positive b(v)-value to a new node t.
- There exist a feasible flow in the original graph iff in the resulting graph there exists an *s*-*t* flow of value

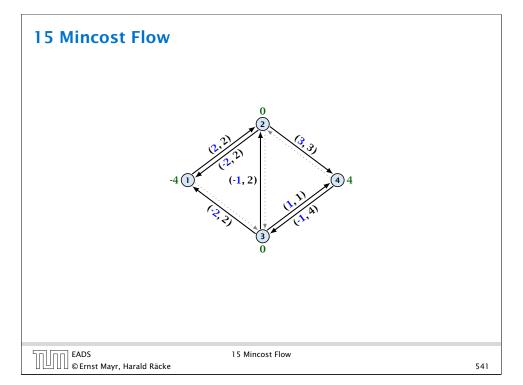
$$\sum_{v:b(v)<0} (-b(v)) = \sum_{v:b(v)>0} b(v) \ .$$











15 Mincost Flow

Lemma 90

The improving cycle algorithm runs in time $O(n^2m^2CU)$, for integer capacities and costs, when for all edges e, $|c(e)| \le C$ and $|u(e)| \leq U.$

- Running time of Bellman-Ford is $\mathcal{O}(mn)$.
- Pushing flow along the cycle can be done in time $\mathcal{O}(n)$.
- Each iteration decreases the total cost by at least 1.
- ► The true optimum cost must lie in the interval $[-mCU,\ldots,+mCU].$

Note that this lemma is weak since it does not allow for edges with infinite capacity.

EADS © Ernst Mayr, Harald Räcke	15 Mincost Flow	
🛛 🕒 🛛 🖉 Ernst Mayr, Harald Räcke		542

15 Mincost Flow

A general mincost flow problem is of the following form:

min $\sum_{e} c(e) f(e)$ s.t. $\forall e \in E$: $\ell(e) \le f(e) \le u(e)$ $\forall v \in V : a(v) \leq f(v) \leq b(v)$

where $a: V \to \mathbb{R}, b: V \to \mathbb{R}; \ell: E \to \mathbb{R} \cup \{-\infty\}, u: E \to \mathbb{R} \cup \{\infty\}$ $c: E \to \mathbb{R};$

Lemma 91 (without proof)

A general mincost flow problem can be solved in polynomial time.

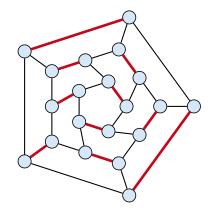
EADS © Ernst Mayr, Harald Räcke

15 Mincost Flow

543

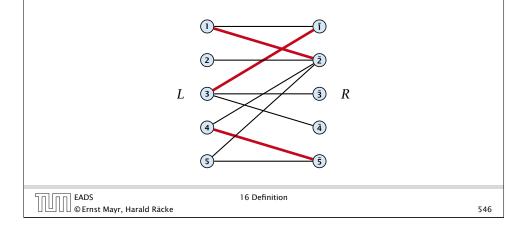
Matching

- Input: undirected graph G = (V, E).
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



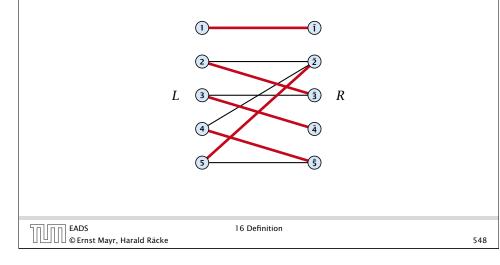
Bipartite Matching

- Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



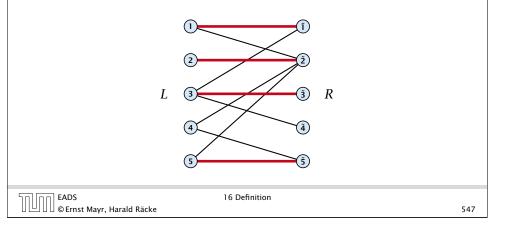
Bipartite Matching

- A matching *M* is perfect if it is of cardinality |M| = |V|/2.
- For a bipartite graph $G = (L \uplus R, E)$ this means |M| = |L| = |R| = n.



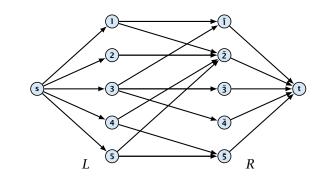
Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



17 Bipartite Matching via Flows

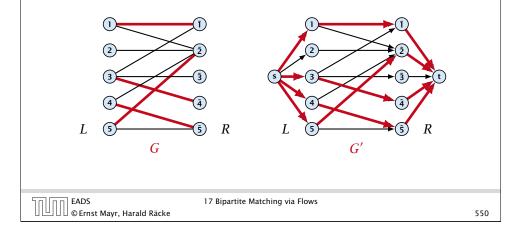
- ▶ Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- ▶ Direct all edges from *L* to *R*.
- Add source *s* and connect it to all nodes on the left.
- Add *t* and connect all nodes on the right to *t*.
- All edges have unit capacity.

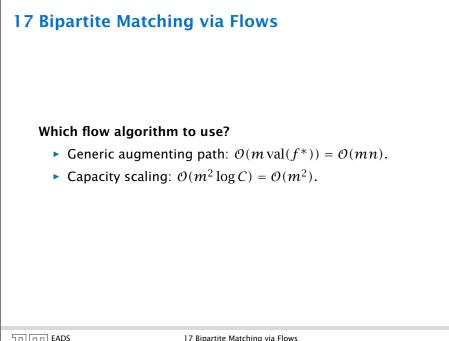


Proof

Max cardinality matching in $G \leq$ value of maxflow in G'

- Given a maximum matching *M* of cardinality *k*.
- Consider flow *f* that sends one unit along each of *k* paths.
- f is a flow and has cardinality k.

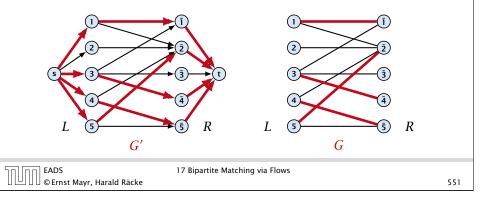




Proof

Max cardinality matching in $G \ge$ value of maxflow in G'

- Let f be a maxflow in G' of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- Consider M= set of edges from L to R with f(e) = 1.
- Each node in *L* and *R* participates in at most one edge in *M*.
- |M| = k, as the flow must use at least k middle edges.



18 Augmenting Paths for Matchings

Definitions.

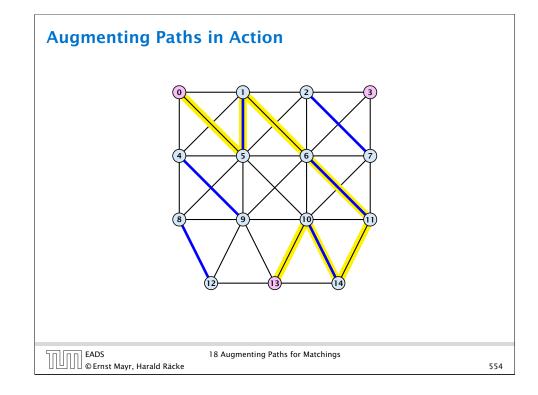
- Given a matching *M* in a graph *G*, a vertex that is not incident to any edge of *M* is called a free vertex w.r..t. *M*.
- ► For a matching *M* a path *P* in *G* is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 92

©Ernst Mayr, Harald Räcke

EADS

A matching M is a maximum matching if and only if there is no augmenting path w.r.t. M.



18 Augmenting Paths for Matchings

Proof.

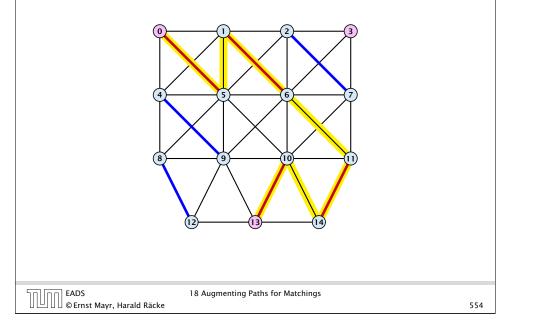
- ⇒ If *M* is maximum there is no augmenting path *P*, because we could switch matching and non-matching edges along *P*. This gives matching $M' = M \oplus P$ with larger cardinality.
- $\Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set M' \oplus M (i.e., only edges that are in either M or M' but not in both).$

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

555

Augmenting Paths in Action



18 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 93

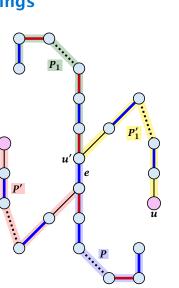
Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

The above theorem allows for an easier implementation of an augmenting path algorithm. Once we checked for augmenting paths starting from u we don't have to check for such paths in future rounds.

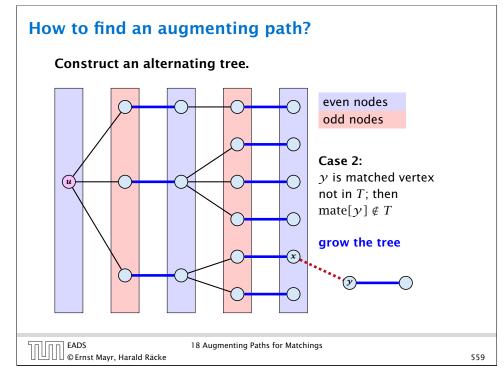
18 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (£).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P₁. Denote the sub-path of P' from u to u' with P'₁.
- $P_1 \circ P_1'$ is augmenting path in M (£).

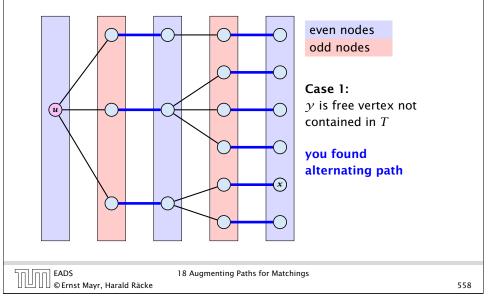


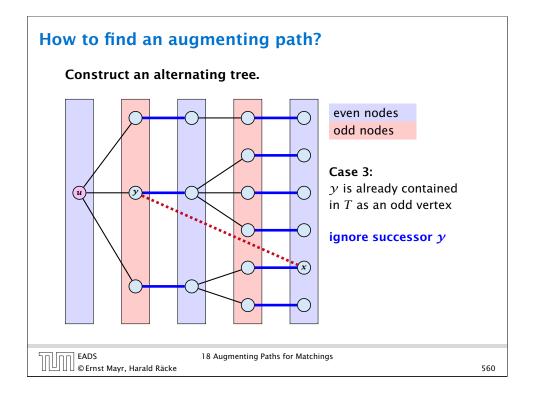
EADS © Ernst Mayr, Harald Räcke	18 Augmenting Paths for Matchings	
🛛 💾 🛛 🖉 © Ernst Mayr, Harald Räcke		557

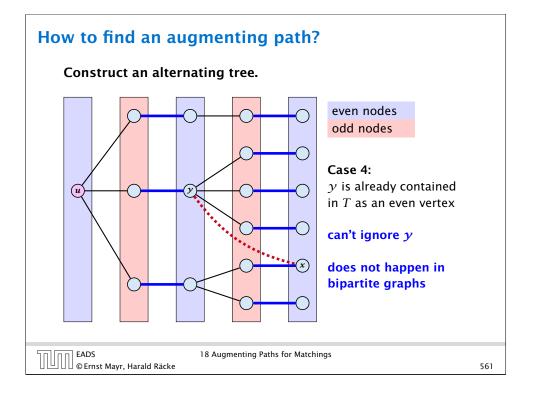


How to find an augmenting path?

Construct an alternating tree.







19 Weighted Bipartite Matching

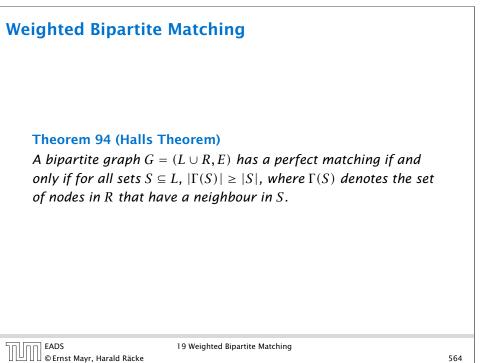
Weighted Bipartite Matching/Assignment

- Input: undirected, bipartite graph $G = L \cup R, E$.
- ▶ an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

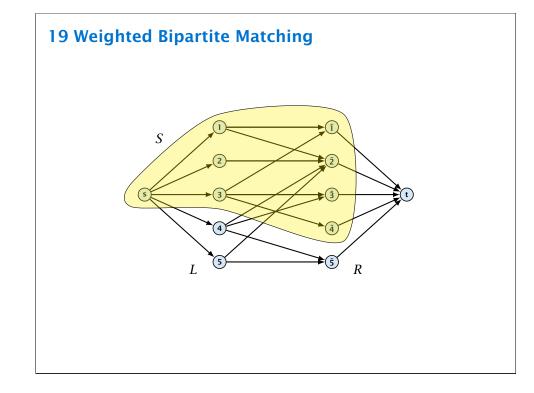
Simplifying Assumptions (wlog [why?]):

- assume that |L| = |R| = n
- assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$

	rithm 52 BiMatch(<i>G</i> , <i>match</i>)	_	
	$\mathbf{r} \ x \in V \ \mathbf{do} \ mate[x] \leftarrow 0;$		
	$\leftarrow 0$; free $\leftarrow n$;		
3: w	hile $free \ge 1$ and $r < n$ do		graph $G = (S \cup S', E)$
4:	$r \leftarrow r + 1$		
5:	if $mate[r] = 0$ then		$S = \{1, \dots, n\}$
6:	for $i = 1$ to m do $parent[i'] \leftarrow 0$		$S' = \{1',, n'\}$
7:	$Q \leftarrow \emptyset; Q. \operatorname{append}(r); aug \leftarrow \operatorname{false}$	2;	
8:	while $aug = false$ and $Q \neq \emptyset$ do		
9:	$x \leftarrow Q.$ dequeue();		
10:	for $\mathcal{Y} \in A_{\mathcal{X}}$ do		
11:	if $mate[y] = 0$ then		
12:	augm(mate, parent, y);		
13:	$aug \leftarrow true;$		
14:	free \leftarrow free -1 ;		
15:	else		
16:	if $parent[y] = 0$ then		
17:	$parent[y] \leftarrow x;$		
18:	Q. enqueue(<i>mate</i> [y])		The lecture version of the slic contains a step-by-step expla



563



Halls Theorem

Proof:

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- ⇒ For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let *S* denote a minimum cut and let $L_S \cong L \cap S$ and $R_S \cong R \cap S$ denote the portion of *S* inside *L* and *R*, respectively.
 - Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - This gives $R_S \ge |\Gamma(L_S)|$.
 - The size of the cut is $|L| |L_S| + |R_S|$.
 - Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

EADS 19 Weighted Bipartite Matching © Ernst Mayr, Harald Räcke 566

Algorithm Outline

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \ge 0$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

- Let $H(\vec{x})$ denote the subgraph of *G* that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges e = (u, v) for which $w_e = x_u + x_v$.
- Try to compute a perfect matching in the subgraph H(x). If you are successful you found an optimal matching.

567

Algorithm Outline

Reason:

• The weight of your matching M^* is

$$\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v .$$

Any other matching M has

$$\sum_{(u,v)\in M} w_{(u,v)} \leq \sum_{(u,v)\in M} (x_u+x_v) \leq \sum_v x_v \ .$$

 $x_u + x_v \ge w_e$ for every edge e = (u, v).

Algorithm Outline

What if you don't find a perfect matching?

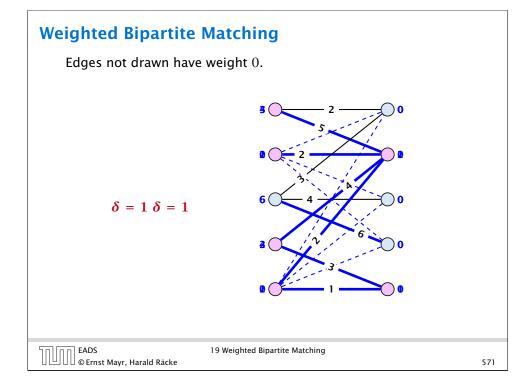
Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

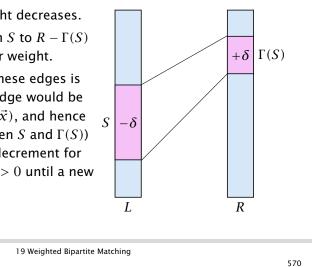
	19 Weighted Bipartite Matching	
🛛 💾 🛛 🖉 © Ernst Mayr, Harald Räcke		569



Changing Node Weights

Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.

- Total node-weight decreases.
- Only edges from *S* to $R \Gamma(S)$ decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between *S* and $\Gamma(S)$) we can do this decrement for small enough $\delta > 0$ until a new edge gets tight.



Analysis

EADS

© Ernst Mayr, Harald Räcke

How many iterations do we need?

- One reweighting step increases the number of edges out of *S* by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in *S* (we will show that we can always find *S* and a matching such that this holds).
- This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L - Sand $R - \Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

```
EADS
```

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

eighted Bipartite Matching	
573	
e	ighted Bipartite Matching 573

Analysis

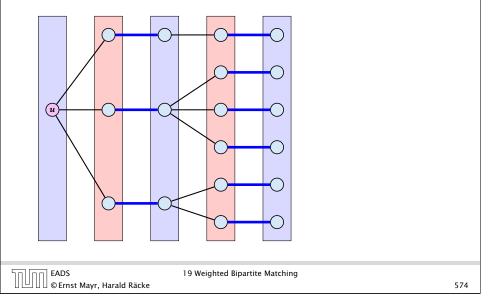
How do we find S?

- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex *u*.
 Hence, |V_{odd}| = |Γ(V_{even})| < |V_{even}|, and all odd vertices are saturated in the current matching.

EADS ©Ernst Mayr, Harald Räcke

How to find an augmenting path?

Construct an alternating tree.



Analysis

- ► The current matching does not have any edges from V_{odd} to outside of L \ V_{even} (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd}. After at most n reweights we can do an augmentation.
- ▶ A reweighting can be trivially performed in time O(n²) (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

A Fast Matching Algorithm

AI	gorithm 53 Bimatch-Hopcroft-Karp(G)
1	$: M \leftarrow \emptyset$
2	: repeat
3	let $\mathcal{P} = \{P_1, \dots, P_k\}$ be maximal set of
4	vertex-disjoint, shortest augmenting path w.r.t. <i>M</i> .
5	$M \leftarrow M \oplus (P_1 \cup \cdots \cup P_k)$
6	: until $\mathcal{P} = \emptyset$
7	: return <i>M</i>

We call one iteration of the repeat-loop a phase of the algorithm.

	20 The Hopcroft-Karp Algorithm	
🛛 🛄 🗍 🖉 Ernst Mayr, Harald Räcke		577

Analysis

- Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $\blacktriangleright M' \stackrel{\text{\tiny def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- \blacktriangleright Let P be an augmenting path in M'.

Lemma 96

The set $A \stackrel{\text{\tiny def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

Analysis

Lemma 95

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- The connected components of *G* are cycles and paths.
- ▶ The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

EADS © Ernst Mayr, Harald Räcke	20 The Hopcroft-Karp Algorithm	
🛛 💾 🛯 🖉 © Ernst Mayr, Harald Räcke		578

Analysis

Proof.

nn EADS

©Ernst Mayr, Harald Räcke

- The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- Hence, the set contains at least k + 1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

Lemma 97

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P_1, \ldots, P_k , this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- Otherwise, at least one edge from *P* coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- ► Hence, $|A| \le k\ell + |P| 1$.
- The lower bound on |A| gives $(k+1)\ell \leq |A| \leq k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

20 The Hopcroft-Karp Algorithm

החוחר	EADS © Ernst Mayr, Harald Räcke
	© Ernst Mayr, Harald Räcke

Analysis

Lemma 98

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.

- After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- Hence, there can be at most $|V|/(\sqrt{|V|} + 1) \le \sqrt{|V|}$ additional augmentations.

Analysis

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

EADS © Ernst Mayr, Harald Räcke

20 The Hopcroft-Karp Algorithm

Analysis

nn EADS

© Ernst Mayr, Harald Räcke

Lemma 99

One phase of the Hopcroft-Karp algorithm can be implemented in time $\mathcal{O}(m)$.

• Do a breadth first search starting at all free vertices in the left side L.

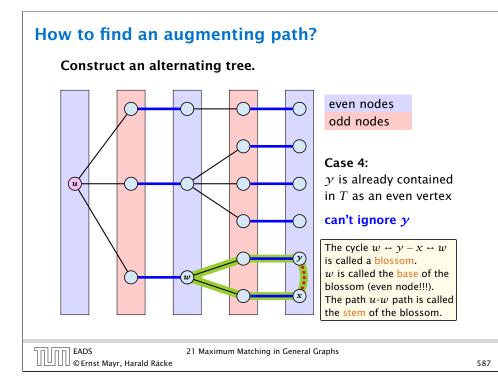
(alternatively add a super-startnode; connect it to all free vertices in L and start breadth first search from there)

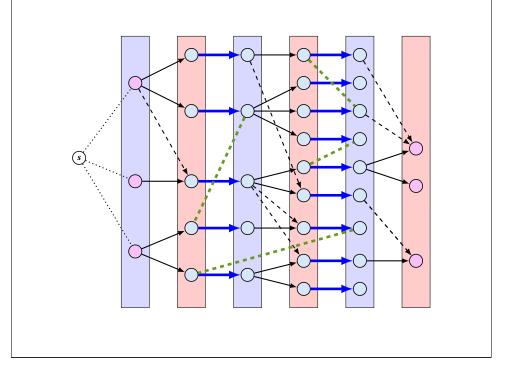
• The search stops when reaching a free vertex. However, the current level of the BFS tree is still finished in order to find a set F of free vertices (on the right side) that can be reached via shortest augmenting paths.

20 The Hopcroft-Karp Algorithm

- Then a maximal set of shortest path from the leftmost layer of the tree construction to nodes in F needs to be computed.
- Any such path must visit the layers of the BFS-tree from left to right.
- To go from an odd layer to an even layer it must use a matching edge.
- To go from an even layer to an odd layer edge it can use edges in the BFS-tree or edges that have been ignored during BFS-tree construction.
- We direct all edges btw. an even node in some layer ℓ to an odd node in layer $\ell + 1$ from left to right.
- A DFS search in the resulting graph gives us a maximal set of vertex disjoint path from left to right in the resulting graph.

	20 The Hopcroft-Karp Algorithm	
🛛 💾 🛛 🖉 Ernst Mayr, Harald Räcke		585





Flowers and Blossoms

Definition 100

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

Flowers and Blossoms

Flowers and Blossoms

Properties:

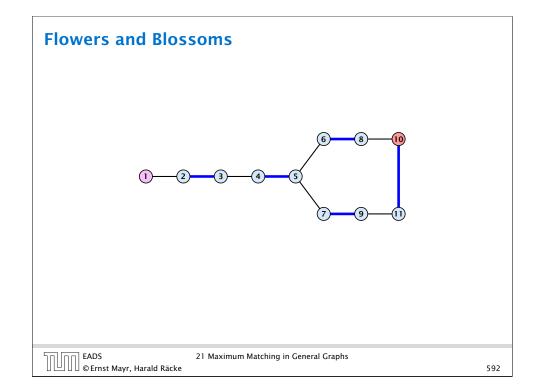
- 4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to *x* terminates with a matched edge and the odd path with an unmatched edge.

Flowers and Blossoms

Properties:

- 1. A stem spans $2\ell + 1$ nodes and contains ℓ matched edges for some integer $\ell \ge 0$.
- **2.** A blossom spans 2k + 1 nodes and contains k matched edges for some integer $k \ge 1$. The matched edges match all nodes of the blossom except the base.
- **3.** The base of a blossom is an even node (if the stem is part of an alternating tree starting at *r*).

EADS © Ernst Mayr, Harald Räcke	21 Maximum Matching in General Graphs	
🛛 💾 🛛 🖉 © Ernst Mayr, Harald Räcke		590

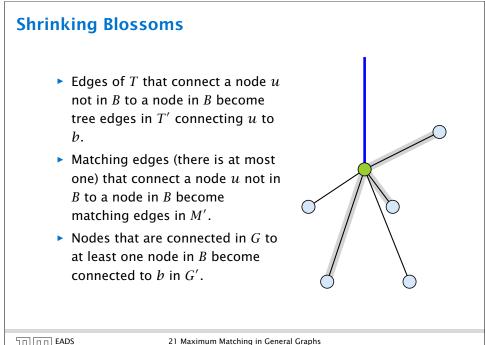


Shrinking Blossoms

When during the alternating tree construction we discover a blossom *B* we replace the graph *G* by G' = G/B, which is obtained from G by contracting the blossom B.

- ▶ Delete all vertices in *B* (and its incident edges) from *G*.
- Add a new (pseudo-)vertex *b*. The new vertex *b* is connected to all vertices in $V \setminus B$ that had at least one edge to a vertex from *B*.

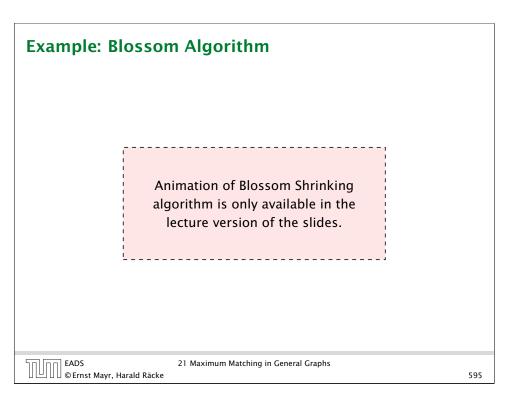
EADS	21 Maximum Matching in General Graphs
🛛 💾 🛛 🖉 © Ernst Mayr, Harald Räcke	



Shrinking Blossoms

- Edges of *T* that connect a node *u* not in *B* to a node in *B* become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in *B* to a node in *B* become matching edges in M'.
- Nodes that are connected in G to at least one node in *B* become connected to b in G'.

EADS © Ernst Mayr, Harald Räcke	21 Maximum Matching in General Graphs	
		594



21 Maximum Matching in General Graphs

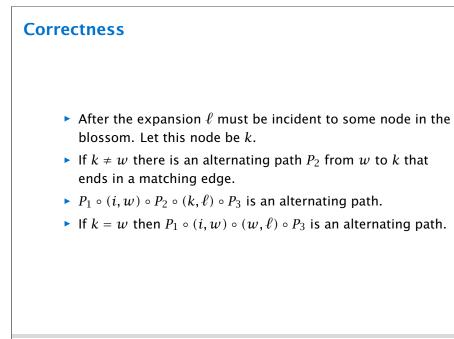
Correctness

Assume that in *G* we have a flower w.r.t. matching *M*. Let r be the root, *B* the blossom, and *w* the base. Let graph G' = G/B with pseudonode *b*. Let *M'* be the matching in the contracted graph.

Lemma 101

If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

EADS © Ernst Mayr, Harald Räcke	21 Maximum Matching in General Graphs



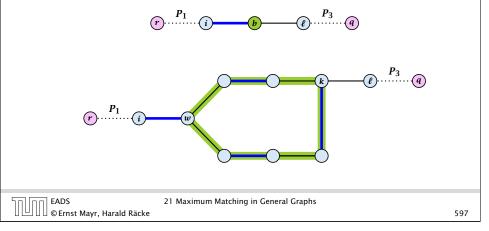
Correctness

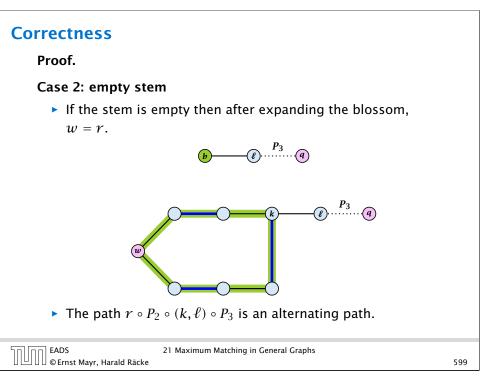
Proof.

If P' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

Next suppose that the stem is non-empty.



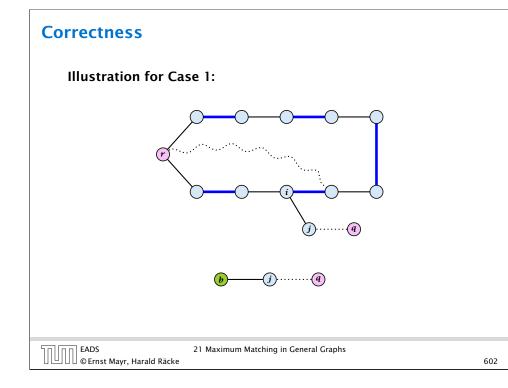


598

Correctness

Lemma 102

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.



Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that *r* and *q* are the only free nodes in *G*.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i, j) \circ P_2$, for some node *j* and (i, j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

EADS © Ernst Mayr, Harald Räcke	21 Maximum Matching in General Graphs
🖳 🗌 🗌 © Ernst Mayr, Harald Räcke	

Correctness

 Π

600

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

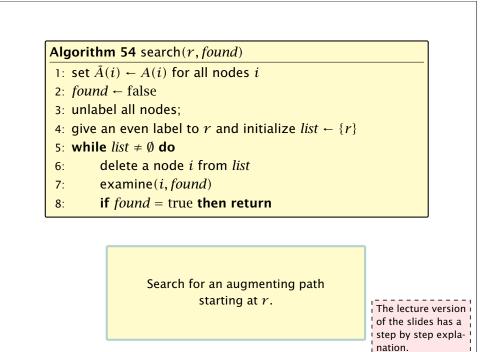
G must contain an augmenting path w.r.t. matching M_+ , since *M* and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

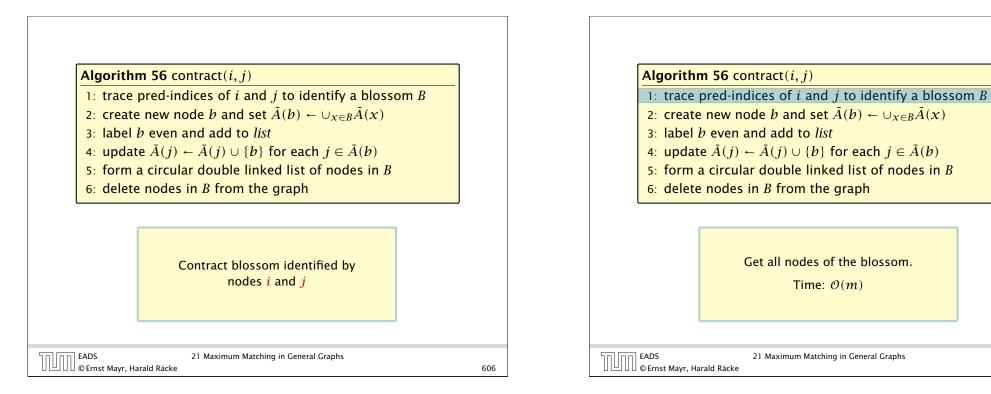
For M'_+ the blossom has an empty stem. Case 1 applies.

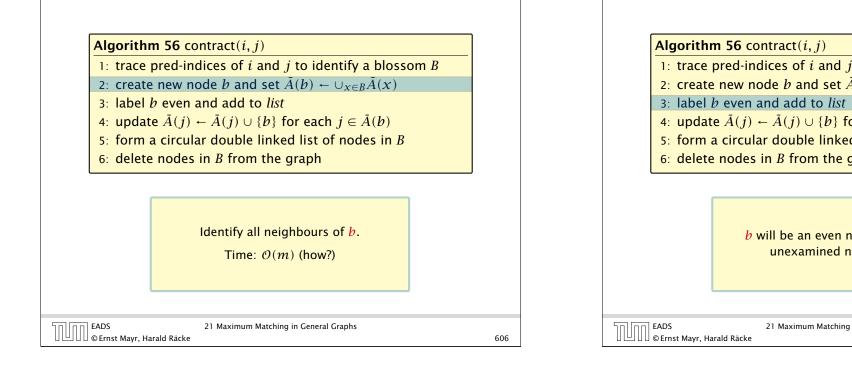
G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

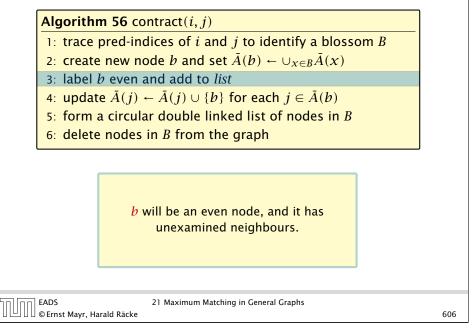
This path must go between r and q.



1: fc	or all $j\in ar{A}(i)$ do
2:	if j is even then contract (i, j) and return
3:	if <i>j</i> is unmatched then
4:	$q \leftarrow j;$
5:	$\operatorname{pred}(q) \leftarrow i;$
6:	<i>found</i> ← true;
7:	return
8:	if <i>j</i> is matched and unlabeled then
9:	$\operatorname{pred}(j) \leftarrow i;$
10:	$pred(mate(j)) \leftarrow j;$
11:	add mate(j) to <i>list</i>







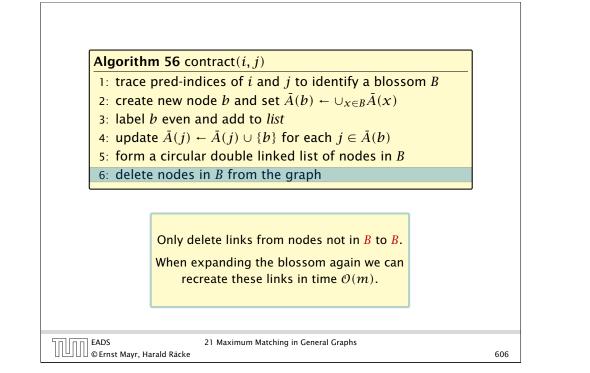
Algorithm 56 contract(*i*, *j*)

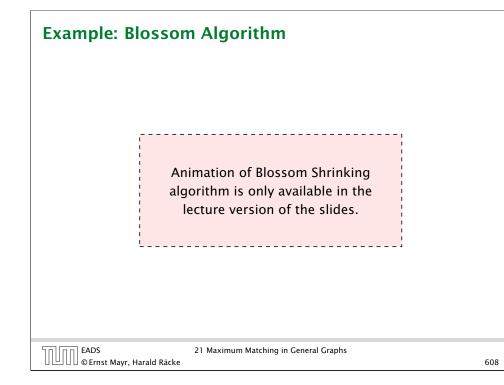
- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node *b* and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph

Every node that was adjacent to a node in **B** is now adjacent to **b**

Algorith	n 56 contract (i, j)
1: trace	pred-indices of i and j to identify a blossom B
2: create	e new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label	b even and add to <i>list</i>
4: updat	e $\overline{A}(j) \leftarrow \overline{A}(j) \cup \{b\}$ for each $j \in \overline{A}(b)$
5: form	a circular double linked list of nodes in B
6: delete	nodes in <i>B</i> from the graph
	Only for making a blossom expansion easier.
EADS	21 Maximum Matching in General Graphs rald Räcke

EADS 21 Maximum Matching in General Graphs UI CErnst Mayr, Harald Räcke





- A contraction operation can be performed in time O(m).
 Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time O(m).
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- In total the running time is at most

$$n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2)$$
.

רח EADS	21 Maximum Matching in General Graphs	
EADS © Ernst Mayr, Harald Räcke		607