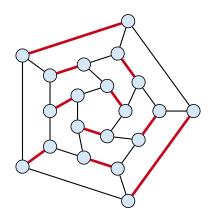
Part V

Matchings

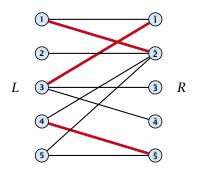
Matching

- ▶ Input: undirected graph G = (V, E).
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



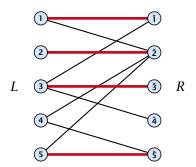
Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



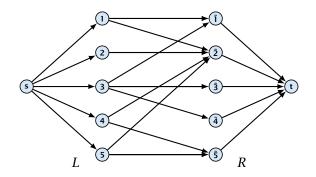
Bipartite Matching

- ▶ A matching M is perfect if it is of cardinality |M| = |V|/2.
- For a bipartite graph $G = (L \uplus R, E)$ this means |M| = |L| = |R| = n.

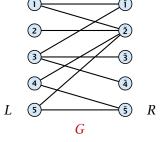


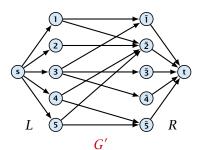
17 Bipartite Matching via Flows

- ▶ Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- ▶ Direct all edges from *L* to *R*.
- Add source s and connect it to all nodes on the left.
- Add t and connect all nodes on the right to t.
- All edges have unit capacity.

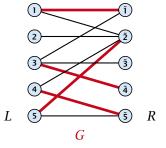


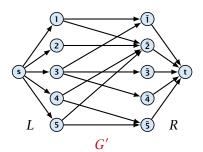
- Given a maximum matching M of cardinality k.
- ▶ Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.



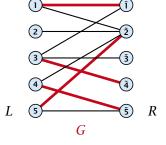


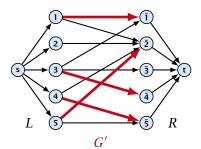
- Given a maximum matching M of cardinality k.
- ▶ Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.



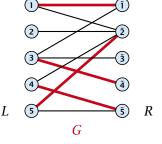


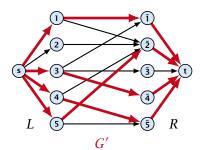
- Given a maximum matching M of cardinality k.
- ▶ Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.



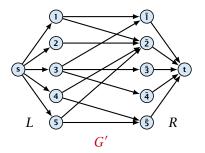


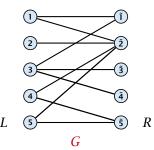
- Given a maximum matching M of cardinality k.
- ▶ Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.



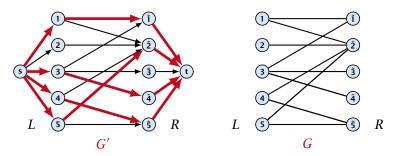


- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- Consider M= set of edges from L to R with f(e) = 1.
- ▶ Each node in *L* and *R* participates in at most one edge in *M*.
- |M| = k, as the flow must use at least k middle edges.

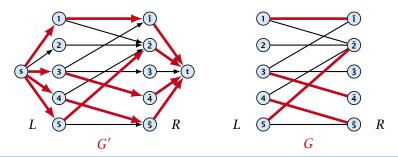




- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- Consider M= set of edges from L to R with f(e) = 1.
- ▶ Each node in *L* and *R* participates in at most one edge in *M*.
- |M| = k, as the flow must use at least k middle edges.



- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- ► Consider M= set of edges from L to R with f(e) = 1.
- ▶ Each node in *L* and *R* participates in at most one edge in *M*.
- |M| = k, as the flow must use at least k middle edges.



17 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path $w.r.t.\ M$.

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem

A matching M is a maximum matching if and only if there is no augmenting path $w.r.t.\ M$.

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem

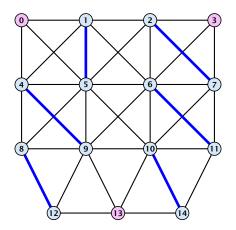
A matching M is a maximum matching if and only if there is no augmenting path $w.r.t.\ M$.

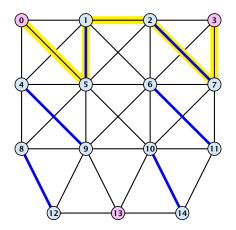
Definitions.

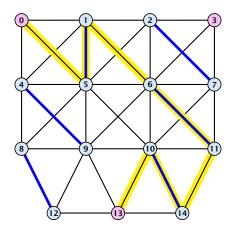
- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

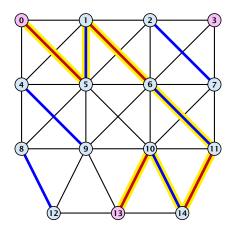
Theorem 1

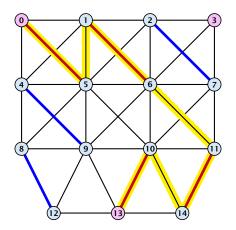
A matching M is a maximum matching if and only if there is no augmenting path w.r.t.M.

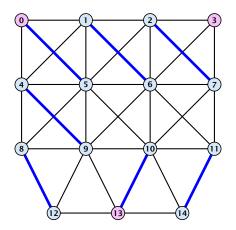












Proof.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

Proof.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

Proof.

- ⇒ If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

Proof.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

Algorithmic idea:

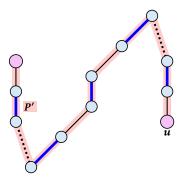
As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

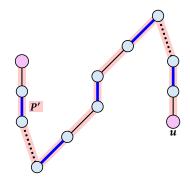
Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

Proof

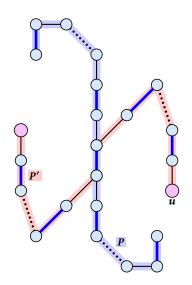
Assume there is an augmenting path P' w.r.t. M' starting at u.



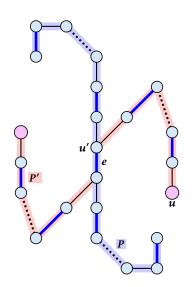
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).



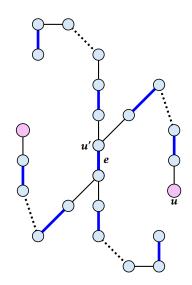
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).



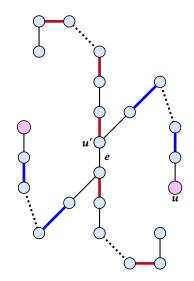
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.



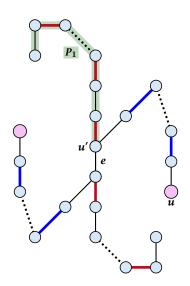
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.



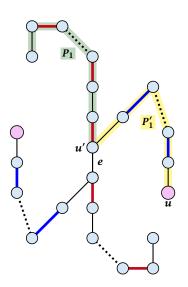
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. $M(\mathcal{E})$.
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.



- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. $M(\mathcal{E})$.
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P_1 . Denote the sub-path of P'from u to u' with P'_1 .

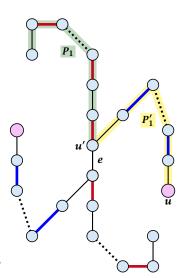


- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. $M(\mathcal{E})$.
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P_1 . Denote the sub-path of P'from u to u' with P'_1 .



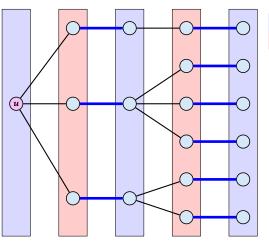
Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. $M(\mathcal{E})$.
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P_1 . Denote the sub-path of P'from u to u' with P'_1 .
- ▶ $P_1 \circ P_1'$ is augmenting path in M (§).



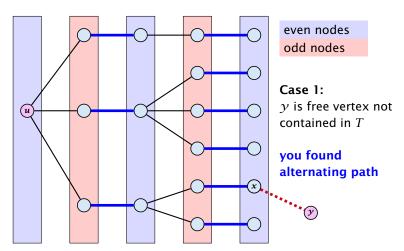
FADS

Construct an alternating tree.

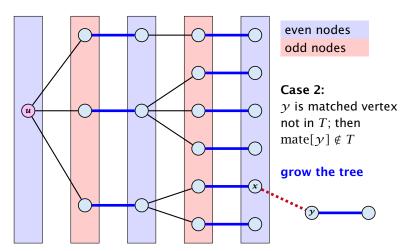


even nodes odd nodes

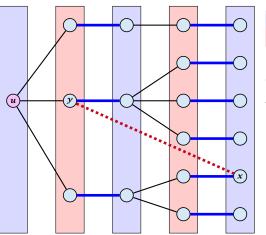
Construct an alternating tree.



Construct an alternating tree.



Construct an alternating tree.

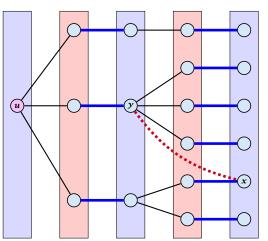


even nodes odd nodes

Case 3:y is already contained in T as an odd vertex

ignore successor y

Construct an alternating tree.



even nodes odd nodes

Case 4:

y is already contained in T as an even vertex

can't ignore ${m y}$

does not happen in bipartite graphs


```
Algorithm 52 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
 5: if mate[r] = 0 then
6:
          for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
          while aug = false and Q \neq \emptyset do
8:
```

 $x \leftarrow O.$ dequeue():

aug ← true;

 $free \leftarrow free - 1$;

for $\gamma \in A_{\chi}$ do

else

9:

10:

11:

12:

13:

14.

15:

16:

17:

18:

graph $G = (S \cup S', E)$ $S = \{1, ..., n\}$ $S' = \{1', \dots, n'\}$

if mate[y] = 0 then augm(mate, parent, y);if parent[v] = 0 then $parent[y] \leftarrow x;$ Q. enqueue(mate[y]);

```
Algorithm 52 BiMatch(G, match)
1: for x \in V do mate[x] \leftarrow 0:
```

- 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$
- 5: **if** mate[r] = 0 **then**
- 6: 7: $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false;
- while aug = false and $Q \neq \emptyset$ do 8:
- 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\chi}$ do
- 11: if mate[y] = 0 then
- 12: augm(mate, parent, y);

else

13:

14.

15:

16:

17:

18:

for i = 1 **to** m **do** $parent[i'] \leftarrow 0$

aug ← true;

 $free \leftarrow free - 1$:

if parent[y] = 0 then

 $parent[y] \leftarrow x$; Q. enqueue(mate[y]);

- empty matching

start with an

```
Algorithm 52 BiMatch(G, match)
```

- 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$

1: **for** $x \in V$ **do** $mate[x] \leftarrow 0$;

- 5: **if** mate[r] = 0 **then**
- 6: for i = 1 to m do $parent[i'] \leftarrow 0$
- 7: $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false;
- while aug = false and $Q \neq \emptyset$ do 8:
- 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\chi}$ do
- 11: if mate[y] = 0 then
- 12: augm(mate, parent, y);
- 13: *aug* ← true;
- 14. $free \leftarrow free - 1$; else
- 15: 16:
- if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

free: number of unmatched nodes in S r: root of current tree

Algorithm 52 BiMatch(*G*, *match*)

1: for $x \in V$ do $mate[x] \leftarrow 0$: 2: $r \leftarrow 0$; free $\leftarrow n$;

6:

7:

8: 9:

10:

11:

12:

13:

14.

3: while $free \ge 1$ and r < n do

4: $r \leftarrow r + 1$

5: **if** mate[r] = 0 **then**

for i = 1 to m do parent[i'] $\leftarrow 0$

 $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false;

while aug = false and $Q \neq \emptyset$ do

 $x \leftarrow O.$ dequeue():

for $\gamma \in A_{\chi}$ do

if mate[y] = 0 then augm(mate, parent, y);

aug ← true;

 $free \leftarrow free - 1$:

15: else 16: if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

as long as there are unmatched nodes and we did not yet try to grow from all nodes we continue

```
Algorithm 52 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
   if mate[r] = 0 then
 5:
 6:
           for i = 1 to m do parent[i'] \leftarrow 0
 7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
```

8: 9:

10:

11.

12:

13:

14.

15:

16:

17:

18:

while aug = false and $Q \neq \emptyset$ do

aug ← true;

 $x \leftarrow O.$ dequeue():

for $\gamma \in A_{\chi}$ do

else

 γ is the new node that we grow from.

```
if mate[y] = 0 then
   augm(mate, parent, y);
   free \leftarrow free - 1:
   if parent[y] = 0 then
      parent[y] \leftarrow x;
```

Q. enqueue(mate[y]);

```
Algorithm 52 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
    \gamma \leftarrow \gamma + 1
 4:
 5: if mate[r] = 0 then
6:
           for i = 1 to m do parent[i'] \leftarrow 0
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
 7:
           while aug = false and Q \neq \emptyset do
8:
```

 $x \leftarrow O.$ dequeue():

aug ← true;

for $\gamma \in A_{\chi}$ do

else

9:

10:

11:

12:

13:

14.

15:

16:

17:

18:

If γ is free start tree construction

```
if mate[y] = 0 then
   augm(mate, parent, y);
   free \leftarrow free - 1;
   if parent[y] = 0 then
      parent[y] \leftarrow x;
```

Q. enqueue(mate[y]);

Algorithm 52 BiMatch(*G*, *match*)

- 1: for $x \in V$ do $mate[x] \leftarrow 0$: 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$
- if mate[r] = 0 then
- 6: for i = 1 to m do $parent[i'] \leftarrow 0$ $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false; 7:
- while aug = false and $Q \neq \emptyset$ do 8:
- 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\chi}$ do
- 11: if mate[y] = 0 then
- 12: augm(mate, parent, y);
- 13: *aug* ← true; 14. $free \leftarrow free - 1$:
 - else if parent[y] = 0 then
- 15: 16: 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

Initialize an empty tree. Note that only nodes i'have parent pointers.

Algorithm 52 BiMatch(*G*, *match*)

- 1: for $x \in V$ do $mate[x] \leftarrow 0$: 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$
- 5: **if** mate[r] = 0 **then**
- 6: for i = 1 to m do parent[i'] $\leftarrow 0$
- $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false; 7:
- while aug = false and $Q \neq \emptyset$ do 8:
- 9: $x \leftarrow O.$ dequeue(): 10: for $\gamma \in A_{\kappa}$ do
- 11: if mate[y] = 0 then
- 12: augm(mate, parent, y);
- 13: *aug* ← true;
- 14. $free \leftarrow free - 1$: 15: else
- 16: if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

Q is a queue (BFS!!!). aua is a Boolean that stores whether we already found an augmenting path.

Algorithm 52 BiMatch(*G*, *match*) 1: for $x \in V$ do $mate[x] \leftarrow 0$:

2: $r \leftarrow 0$; free $\leftarrow n$;

6:

7:

8: 9:

10:

- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$
- 5: **if** mate[r] = 0 **then**
 - **for** i = 1 **to** m **do** $parent[i'] \leftarrow 0$
 - $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false;
 - while aug = false and $Q \neq \emptyset$ do
 - $x \leftarrow O.$ dequeue():
 - for $\gamma \in A_{\chi}$ do
- 11: if mate[y] = 0 then
- 12: augm(mate, parent, y);
- 13: *aug* ← true;
- 14. $free \leftarrow free - 1$:
 - else
- 15: 16: if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

as long as we did not augment and there are still unexamined leaves continue...

```
Algorithm 52 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
 5: if mate[r] = 0 then
6:
           for i = 1 to m do parent[i'] \leftarrow 0
 7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
           while aug = false and Q \neq \emptyset do
8:
               x \leftarrow Q. dequeue();
9:
10:
               for \gamma \in A_{\kappa} do
11:
                   if mate[y] = 0 then
```

else

augm(mate, parent, y);

if parent[y] = 0 then

 $parent[y] \leftarrow x;$ Q. enqueue(mate[y]);

aug ← true;

 $free \leftarrow free - 1$:

12:

13:

14.

15:

16:

17:

18:

take next unexamined leaf

Algorithm 52 BiMatch(*G*, *match*) 1: for $x \in V$ do $mate[x] \leftarrow 0$:

- 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$
- 5: **if** mate[r] = 0 **then**
- 6: for i = 1 to m do parent[i'] $\leftarrow 0$
- 7: $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false;
- while aug = false and $Q \neq \emptyset$ do 8:
- 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\kappa}$ do
- 11: if $mate[\gamma] = 0$ then
- 12: augm(mate, parent, y);
- 13: *aug* ← true;
- 14. $free \leftarrow free - 1$: 15: else 16:
- if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

if x has unmatched neighbour we found an augmenting path (note that $y \neq r$ because we are in a bipartite graph)

```
Algorithm 52 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
 5: if mate[r] = 0 then
6:
          for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
          while aug = false and Q \neq \emptyset do
8:
9:
              x \leftarrow O. dequeue():
10:
               for \gamma \in A_{\chi} do
11:
                  if mate[y] = 0 then
12:
                      augm(mate, parent, y);
13:
                      aug ← true;
14.
                      free \leftarrow free - 1:
15:
                  else
16:
                      if parent[y] = 0 then
17:
                          parent[y] \leftarrow x;
```

18:

Q. enqueue(mate[y]);

do an augmentation...

Algorithm 52 BiMatch(G, match) 1: for $x \in V$ do $mate[x] \leftarrow 0$:

- 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$
- 5: **if** mate[r] = 0 **then**
- 6: for i = 1 to m do parent[i'] $\leftarrow 0$ 7: $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false;
- while aug = false and $Q \neq \emptyset$ do 8:
- 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\chi}$ do
- 11: if mate[y] = 0 then

18:

- 12: augm(mate, parent, y);13: *aug* ← true;
- 14: $free \leftarrow free - 1$: 15: else
- 16: if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]);

setting aug = trueensures that the tree construction will not continue

```
Algorithm 52 BiMatch(G, match)

1: for x \in V do mate[x] \leftarrow 0;

2: r \leftarrow 0; free \leftarrow n;

3: while free \geq 1 and r < n do

4: r \leftarrow r + 1

5: if mate[r] = 0 then

6: for i = 1 to m do parent[i'] \leftarrow 0

7: Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;

8: while aug = false and Q \neq \emptyset do
```

 $x \leftarrow O.$ dequeue():

if mate[y] = 0 then

 $free \leftarrow free - 1$:

aug ← true;

augm(mate, parent, y);

if parent[y] = 0 then

Q. enqueue(mate[y]);

 $parent[y] \leftarrow x$;

for $\gamma \in A_{\chi}$ do

else

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

reduce number of free nodes

```
Algorithm 52 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
 5: if mate[r] = 0 then
6:
          for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
          while aug = false and Q \neq \emptyset do
8:
9:
              x \leftarrow O. dequeue():
10:
              for \gamma \in A_{\chi} do
11:
                  if mate[y] = 0 then
12:
                      augm(mate, parent, y);
13:
                      aug ← true;
```

else

 $free \leftarrow free - 1$:

if parent[y] = 0 then $parent[y] \leftarrow x$;

Q. enqueue(mate[y]);

14.

15: 16:

17:

18:

if $\boldsymbol{\mathcal{Y}}$ is not in the tree yet

```
Algorithm 52 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
 5: if mate[r] = 0 then
6:
          for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
          while aug = false and Q \neq \emptyset do
8:
9:
              x \leftarrow O. dequeue():
10:
               for \gamma \in A_{\chi} do
11:
                  if mate[y] = 0 then
12:
                      augm(mate, parent, y);
13:
                      aug ← true;
14.
                      free \leftarrow free - 1:
```

else

if parent[v] = 0 then

Q. enqueue(mate[y]);

 $parent[y] \leftarrow x$;

15:

16:

17:

18:

...put it into the tree

Algorithm 52 BiMatch(G, match)

1: for $x \in V$ do $mate[x] \leftarrow 0$: 2: $r \leftarrow 0$; free $\leftarrow n$;

6:

7:

8: 9:

10:

11:

12:

13:

3: while $free \ge 1$ and r < n do

4:
$$r \leftarrow r + 1$$

4:
$$r \leftarrow r + 1$$

5: **if** $mate[r] = 0$ **then**

for
$$i = 1$$
 to m do $parent[i'] \leftarrow 0$

$$Q \leftarrow \emptyset$$
; Q. append(r); $aug \leftarrow false$;

while aug = false and $Q \neq \emptyset$ do $x \leftarrow O.$ dequeue():

for $\gamma \in A_{\chi}$ do

if mate[y] = 0 then

- augm(mate, parent, y);
- *aug* ← true;
- 14. $free \leftarrow free - 1$: else
- 15: 16: if parent[y] = 0 then $parent[y] \leftarrow x$; 17: O. enqueue(mate[v]); 18:

add its buddy to the set of unexamined leaves

19 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

- ▶ Input: undirected, bipartite graph $G = L \cup R, E$.
- ▶ an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

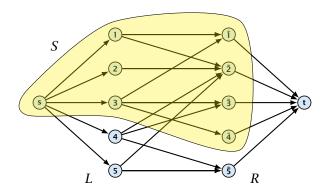
- assume that |L| = |R| = n
- assume that there is an edge between every pair of nodes $(\ell,r) \in V \times V$

Weighted Bipartite Matching

Theorem 3 (Halls Theorem)

A bipartite graph $G = (L \cup R, E)$ has a perfect matching if and only if for all sets $S \subseteq L$, $|\Gamma(S)| \ge |S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

19 Weighted Bipartite Matching



- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - ▶ Let S denote a minimum cut and let $L_S \cong L \cap S$ and $R_S \cong R \cap S$ denote the portion of S inside L and R, respectively.
 - Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - ▶ This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - ▶ Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \stackrel{\text{\tiny def}}{=} L \cap S$ and $R_S \stackrel{\text{\tiny def}}{=} R \cap S$ denote the portion of S inside L and R, respectively.
 - Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - ▶ This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - ▶ Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \stackrel{\text{\tiny def}}{=} L \cap S$ and $R_S \stackrel{\text{\tiny def}}{=} R \cap S$ denote the portion of S inside L and R, respectively.
 - ▶ Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - ▶ This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - ▶ Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \stackrel{\text{def}}{=} L \cap S$ and $R_S \stackrel{\text{def}}{=} R \cap S$ denote the portion of S inside L and R, respectively.
 - ▶ Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - ▶ This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - ▶ Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \stackrel{\text{\tiny def}}{=} L \cap S$ and $R_S \stackrel{\text{\tiny def}}{=} R \cap S$ denote the portion of S inside L and R, respectively.
 - ▶ Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - ▶ This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - ▶ Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \stackrel{\text{def}}{=} L \cap S$ and $R_S \stackrel{\text{def}}{=} R \cap S$ denote the portion of S inside L and R, respectively.
 - ▶ Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - ▶ This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - ▶ Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \ge 0$ denote the weight of node v.

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \ge 0$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

$$x_u + x_v \ge w_e$$
 for every edge $e = (u, v)$.

- Let $H(\vec{x})$ denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges e = (u, v) for which $w_e = x_u + x_v$.
- ► Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \ge 0$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

$$x_u + x_v \ge w_e$$
 for every edge $e = (u, v)$.

- Let $H(\vec{x})$ denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges e = (u, v) for which $w_e = x_u + x_v$.
- ► Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \ge 0$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

$$x_u + x_v \ge w_e$$
 for every edge $e = (u, v)$.

- Let $H(\vec{x})$ denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges e = (u, v) for which $w_e = x_u + x_v$.
- ▶ Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Reason:

▶ The weight of your matching M^* is

$$\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v \ .$$

Any other matching M has

$$\sum_{(u,v) \in M} w_{(u,v)} \leq \sum_{(u,v) \in M} (x_u + x_v) \leq \sum_v x_v \ .$$

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

What if you don't find a perfect matching?

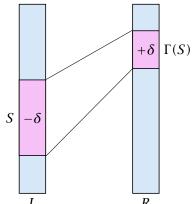
Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

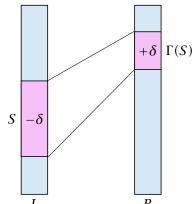
- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

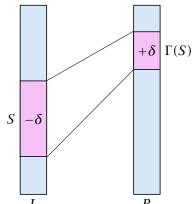
- ► Total node-weight decreases
- ▶ Only edges from S to $R \Gamma(S)$ decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between S and $\Gamma(S)$) we can do this decrement for small enough $\delta>0$ until a new edge gets tight.



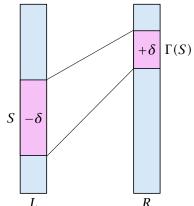
- Total node-weight decreases.
- ▶ Only edges from S to $R \Gamma(S)$ decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between S and $\Gamma(S)$) we can do this decrement for small enough $\delta>0$ until a new edge gets tight.



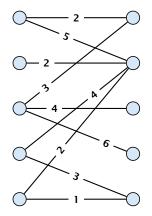
- Total node-weight decreases.
- ► Only edges from S to $R \Gamma(S)$ decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between S and $\Gamma(S)$) we can do this decrement for small enough $\delta>0$ until a new edge gets tight.

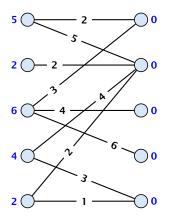


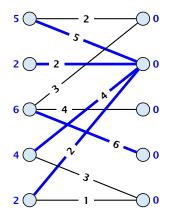
- Total node-weight decreases.
- ▶ Only edges from S to $R \Gamma(S)$ decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between S and $\Gamma(S)$) we can do this decrement for small enough $\delta>0$ until a new edge gets tight.

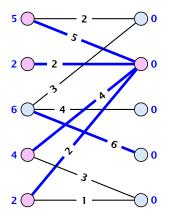




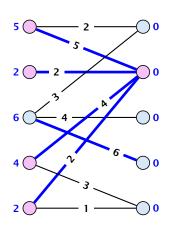


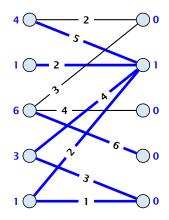


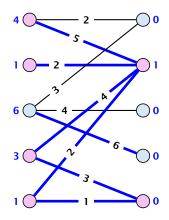




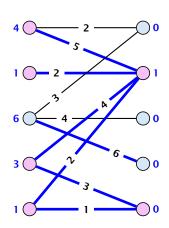
$$\delta = 1$$

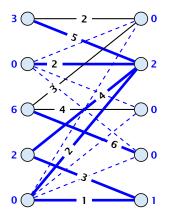


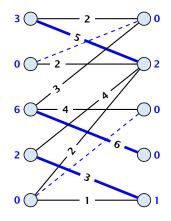


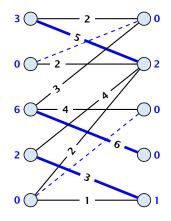


$$\delta = 1$$









- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in S (we will show that we can always find S and a matching such that this holds).
- ▶ This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L-S and $R-\Gamma(S)$.
- ► Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in S (we will show that we can always find S and a matching such that this holds).
- ► This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L-S and $R-\Gamma(S)$.
- ► Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

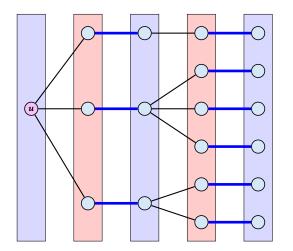
- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in S (we will show that we can always find S and a matching such that this holds).
- ► This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L-S and $R-\Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in S (we will show that we can always find S and a matching such that this holds).
- ► This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L-S and $R-\Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

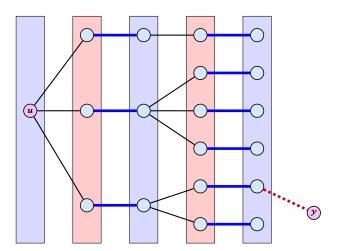
How to find an augmenting path?

Construct an alternating tree.



How to find an augmenting path?

Construct an alternating tree.



- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at u).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex u. Hence, $|V_{\rm odd}| = |\Gamma(V_{\rm even})| < |V_{\rm even}|$, and all odd vertices are saturated in the current matching.

- Start on the left and compute an alternating tree, starting at any free node u.
- ▶ If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of ever nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex u. Hence, $|V_{\rm odd}| = |\Gamma(V_{\rm even})| < |V_{\rm even}|$, and all odd vertices are saturated in the current matching.

- Start on the left and compute an alternating tree, starting at any free node u.
- ▶ If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex u. Hence, $|V_{\rm odd}| = |\Gamma(V_{\rm even})| < |V_{\rm even}|$, and all odd vertices are saturated in the current matching.

- Start on the left and compute an alternating tree, starting at any free node u.
- ▶ If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- ▶ All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex u. Hence, $|V_{\rm odd}| = |\Gamma(V_{\rm even})| < |V_{\rm even}|$, and all odd vertices are saturated in the current matching.

- ▶ The current matching does not have any edges from $V_{\rm odd}$ to outside of $L \setminus V_{\rm even}$ (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd} . After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- An augmentation takes at most O(n) time.
- ▶ In total we otain a running time of $O(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

- ▶ The current matching does not have any edges from $V_{\rm odd}$ to outside of $L \setminus V_{\rm even}$ (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting $V_{\rm even}$ to a node outside of $V_{\rm odd}$. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

- ▶ The current matching does not have any edges from $V_{\rm odd}$ to outside of $L \setminus V_{\rm even}$ (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting $V_{\rm even}$ to a node outside of $V_{\rm odd}$. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- ▶ In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

- ▶ The current matching does not have any edges from $V_{\rm odd}$ to outside of $L \setminus V_{\rm even}$ (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting $V_{\rm even}$ to a node outside of $V_{\rm odd}$. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- An augmentation takes at most O(n) time.
- ▶ In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

- ▶ The current matching does not have any edges from $V_{\rm odd}$ to outside of $L \setminus V_{\rm even}$ (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting $V_{\rm even}$ to a node outside of $V_{\rm odd}$. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- An augmentation takes at most O(n) time.
- ▶ In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

- The current matching does not have any edges from $V_{\rm odd}$ to outside of $L \setminus V_{\rm even}$ (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting $V_{\rm even}$ to a node outside of $V_{\rm odd}$. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- An augmentation takes at most O(n) time.
- ▶ In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

A Fast Matching Algorithm

Algorithm 53 Bimatch-Hopcroft-Karp(G)

3: let $\mathcal{P} = \{P_1, \dots, P_k\}$ be maximal set of 4: vertex-disjoint, shortest augmenting path w.r.t. M.

5: $M \leftarrow M \oplus (P_1 \cup \cdots \cup P_k)$

6: until $\mathcal{P} = \emptyset$

7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- ▶ Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ▶ The connected components of *G* are cycles and paths
- ▶ The graph contains $k ext{ # } |M^*| |M|$ more red edges than blue edges.
- ► Hence, there are at least *k* components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. *M*.

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- ► Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- The connected components of G are cycles and paths.
- ▶ The graph contains $k ext{ # } |M^*| |M|$ more red edges than blue edges.
- ▶ Hence, there are at least *k* components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. *M*.

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ▶ The connected components of *G* are cycles and paths.
- ▶ The graph contains $k ext{ \(\ext{!}} |M^*| |M| \) more red edges than blue edges.$
- Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ightharpoonup The connected components of G are cycles and paths.
- ▶ The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- ► Hence, there are at least *k* components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. *M*.

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ightharpoonup The connected components of G are cycles and paths.
- ▶ The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

- Let $P_1, ..., P_k$ be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 5

The set $A \cong M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

- Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 5

The set $A \not \equiv M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

- Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 5

The set $A \not \subseteq M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

- Let $P_1, ..., P_k$ be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 5

The set $A \stackrel{\text{def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

- ▶ The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- Hence, the set contains at least k+1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- **Each** of these paths is of length at least ℓ

- ▶ The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- Hence, the set contains at least k+1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- **Each** of these paths is of length at least ℓ .

- ▶ The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ► Hence, the set contains at least k+1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

Lemma 6

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Lemma 6

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- ▶ If P does not intersect any of the $P_1, ..., P_k$, this follows from the maximality of the set $\{P_1, ..., P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- ▶ This edge is not contained in *A*.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 6

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- If P does not intersect any of the P_1, \ldots, P_k , this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- ▶ This edge is not contained in *A*.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 6

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- If P does not intersect any of the P_1, \ldots, P_k , this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 6

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- If P does not intersect any of the P_1, \ldots, P_k , this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- ▶ This edge is not contained in *A*.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 6

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- If P does not intersect any of the P_1, \ldots, P_k , this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- ▶ This edge is not contained in *A*.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell+1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M|+\frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*|-|M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell+1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Lemma 7

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

- After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \geq \sqrt{|V|}$.
- ► Hence, there can be at most $|V|/(\sqrt{|V|}+1) \le \sqrt{|V|}$ additional augmentations.

Lemma 7

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

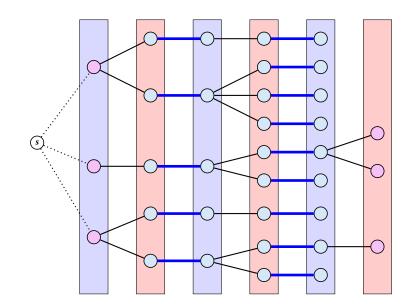
- ▶ After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- ► Hence, there can be at most $|V|/(\sqrt{|V|}+1) \le \sqrt{|V|}$ additional augmentations.

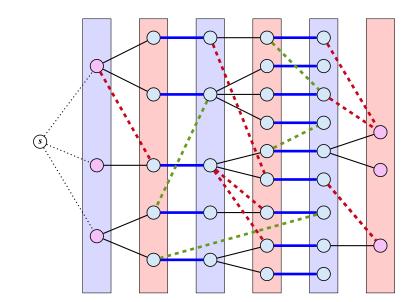
Lemma 8

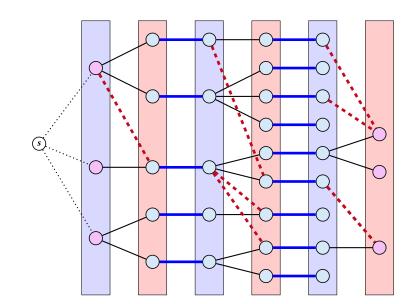
One phase of the Hopcroft-Karp algorithm can be implemented in time O(m).

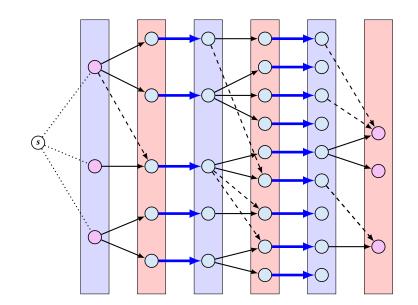
- ▶ Do a breadth first search starting at all free vertices in the left side L.
 - (alternatively add a super-startnode; connect it to all free vertices in L and start breadth first search from there)
- ► The search stops when reaching a free vertex. However, the current level of the BFS tree is still finished in order to find a set F of free vertices (on the right side) that can be reached via shortest augmenting paths.

- Then a maximal set of shortest path from the leftmost layer of the tree construction to nodes in F needs to be computed.
- Any such path must visit the layers of the BFS-tree from left to right.
- To go from an odd layer to an even layer it must use a matching edge.
- To go from an even layer to an odd layer edge it can use edges in the BFS-tree or edges that have been ignored during BFS-tree construction.
- We direct all edges btw. an even node in some layer ℓ to an odd node in layer $\ell+1$ from left to right.
- A DFS search in the resulting graph gives us a maximal set of vertex disjoint path from left to right in the resulting graph.



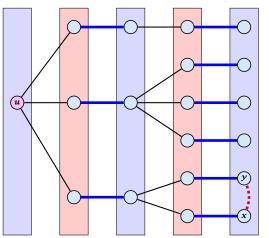






How to find an augmenting path?

Construct an alternating tree.



even nodes odd nodes

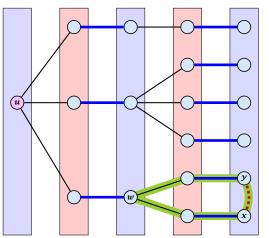
Case 4:

 \boldsymbol{y} is already contained in T as an even vertex

can't ignore y

How to find an augmenting path?

Construct an alternating tree.



even nodes odd nodes

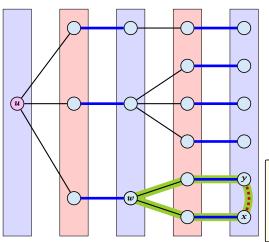
Case 4:

y is already contained in T as an even vertex

can't ignore y

How to find an augmenting path?

Construct an alternating tree.



even nodes odd nodes

Case 4:

y is already contained in T as an even vertex

can't ignore y

The cycle $w \leftrightarrow y - x \leftrightarrow w$ is called a blossom. w is called the base of the blossom (even node!!!). The path u-w path is called the stem of the blossom.

Definition 9

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r=w (empty stem).
- ▶ A blossom is an odd length alternating cycle that starts and terminates at the terminal node *w* of a stem and has no other node in common with the stem. *w* is called the base of the blossom.

Definition 9

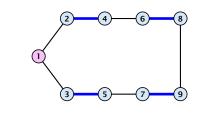
A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

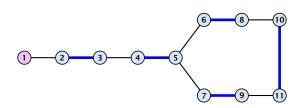
- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

Definition 9

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.





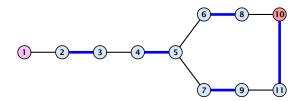
- 1. A stem spans $2\ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
- **2.** A blossom spans 2k + 1 nodes and contains k matched edges for some integer $k \ge 1$. The matched edges match all nodes of the blossom except the base.
- 3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

- 1. A stem spans $2\ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
- **2.** A blossom spans 2k + 1 nodes and contains k matched edges for some integer $k \ge 1$. The matched edges match all nodes of the blossom except the base.
- 3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

- 1. A stem spans $2\ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
- 2. A blossom spans 2k + 1 nodes and contains k matched edges for some integer $k \ge 1$. The matched edges match all nodes of the blossom except the base.
- 3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

- **4.** Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- **5.** The even alternating path to *x* terminates with a matched edge and the odd path with an unmatched edge.

- 4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to *x* terminates with a matched edge and the odd path with an unmatched edge.



When during the alternating tree construction we discover a blossom B we replace the graph G by G' = G/B, which is obtained from G by contracting the blossom B.

- ▶ Delete all vertices in *B* (and its incident edges) from *G*.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in V \ B that had at least one edge to a vertex from B.

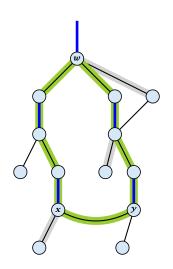
When during the alternating tree construction we discover a blossom B we replace the graph G by G' = G/B, which is obtained from G by contracting the blossom B.

- Delete all vertices in B (and its incident edges) from G.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in V \ B that had at least one edge to a vertex from B.

When during the alternating tree construction we discover a blossom B we replace the graph G by G' = G/B, which is obtained from G by contracting the blossom B.

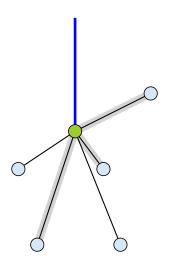
- Delete all vertices in B (and its incident edges) from G.
- ▶ Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in $V \setminus B$ that had at least one edge to a vertex from B.

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to h.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.

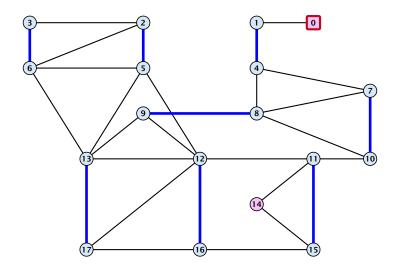


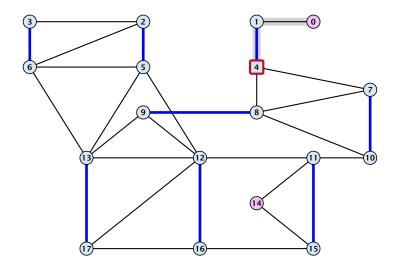
FADS

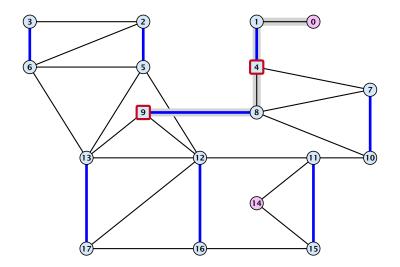
- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to h.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.

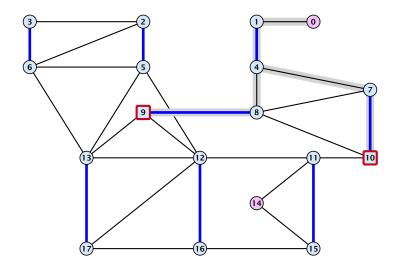


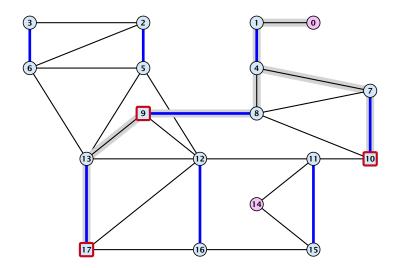
FADS

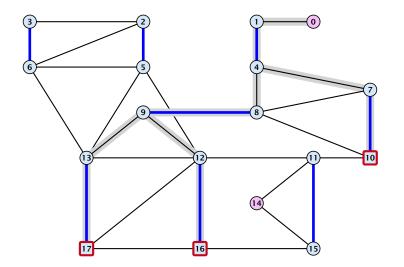


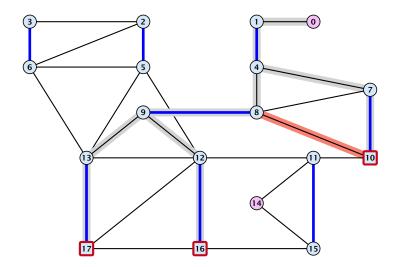


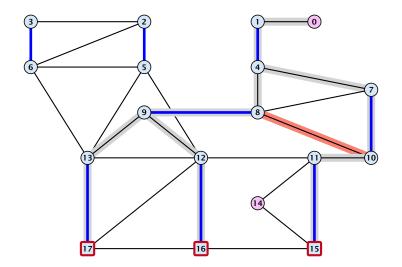


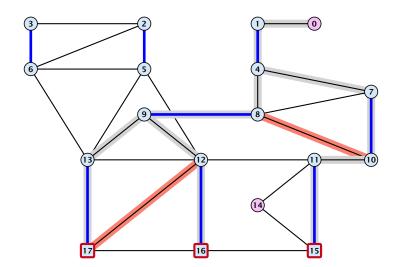


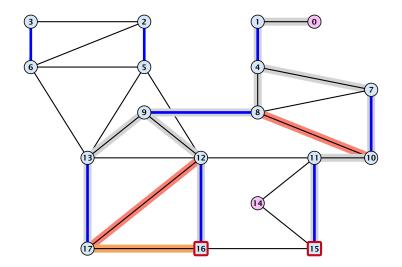


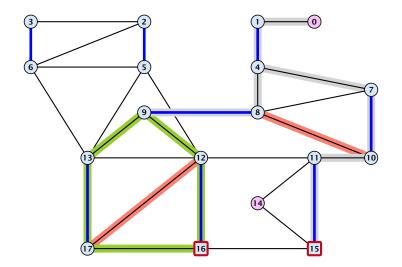


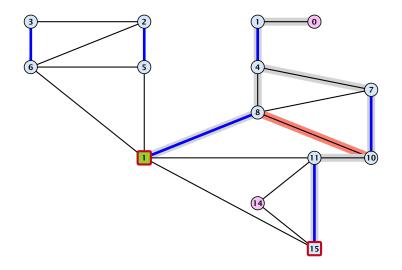


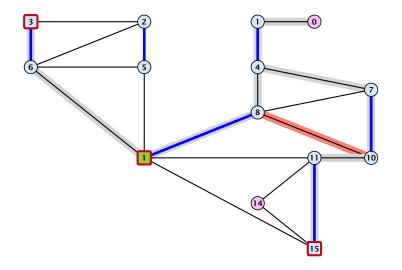


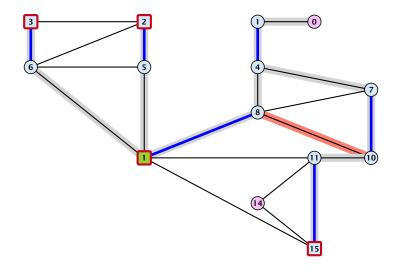


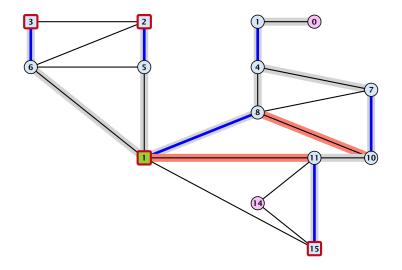


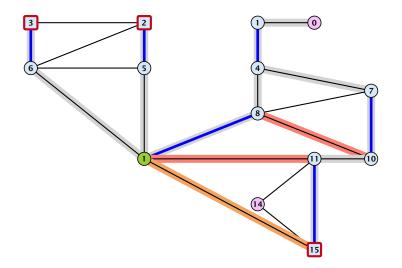


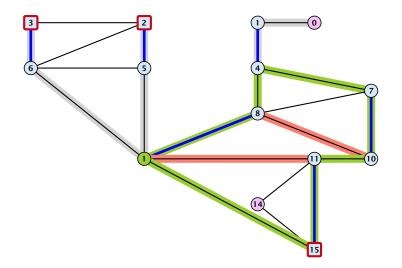


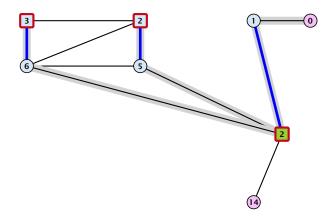


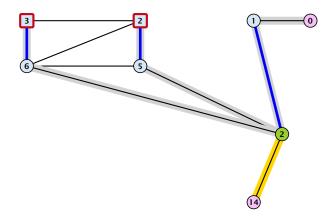


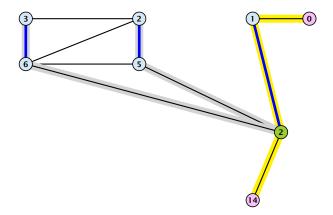


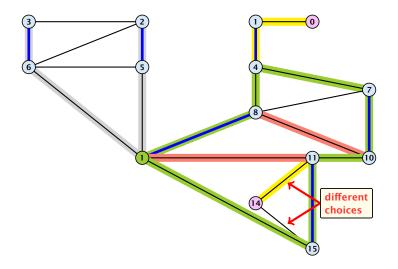


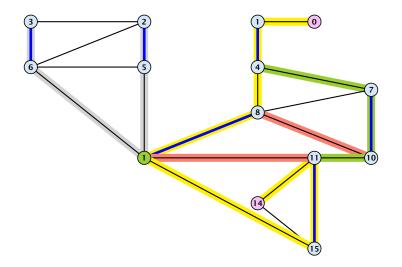


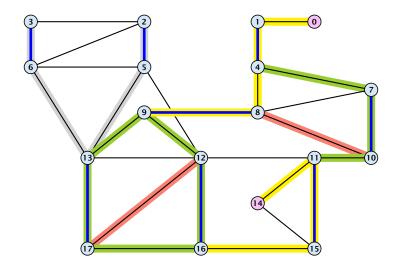


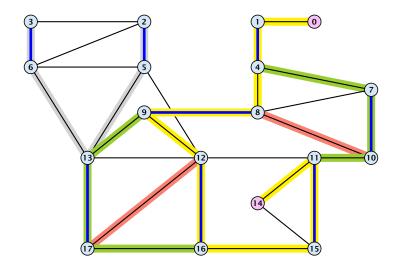


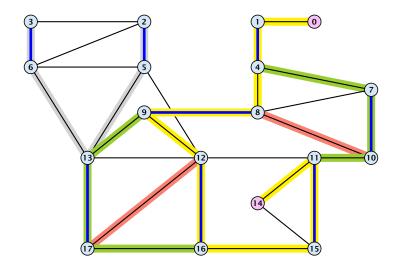












Assume that in G we have a flower w.r.t. matching M. Let r be the root, B the blossom, and W the base. Let graph G' = G/B with pseudonode b. Let M' be the matching in the contracted graph.

Lemma 10

If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then G contains an augmenting path starting at r w.r.t. matching M

Assume that in G we have a flower w.r.t. matching M. Let r be the root, B the blossom, and w the base. Let graph G' = G/B with pseudonode b. Let M' be the matching in the contracted graph.

Lemma 10

If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

Proof.

If P' does not contain b it is also an augmenting path in G.

Proof.

If P' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

Next suppose that the stem is non-empty.

Proof.

If P' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

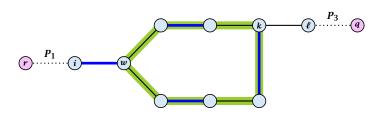
Next suppose that the stem is non-empty.

Proof.

If P' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

Next suppose that the stem is non-empty.



- \blacktriangleright After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- ▶ If k = w then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

Proof.

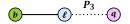
Case 2: empty stem

If the stem is empty then after expanding the blossom, w = r.

Proof.

Case 2: empty stem

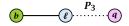
If the stem is empty then after expanding the blossom, w = r.

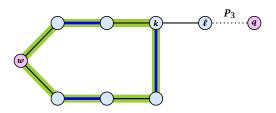


Proof.

Case 2: empty stem

If the stem is empty then after expanding the blossom, w = r.

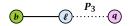


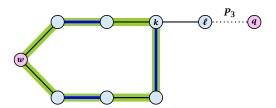


Proof.

Case 2: empty stem

If the stem is empty then after expanding the blossom, w = r.





▶ The path $r \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.

Lemma 11

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i, j) \circ P_2$, for some node j and (i, j) is unmatched.

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1\circ (i,j)\circ P_2$, for some node j and (i,j) is unmatched.

Proof.

- If P does not contain a node from B there is nothing to prove.
- \blacktriangleright We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1\circ (i,j)\circ P_2$, for some node j and (i,j) is unmatched.

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i, j) \circ P_2$, for some node j and (i, j) is unmatched.

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i, j) \circ P_2$, for some node j and (i, j) is unmatched.

Proof.

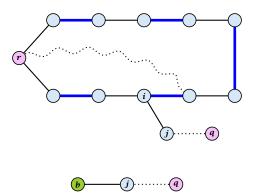
- ▶ If *P* does not contain a node from *B* there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i, j) \circ P_2$, for some node j and (i, j) is unmatched.

Illustration for Case 1:



Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between $oldsymbol{w}$ and $oldsymbol{q}$ as these are the only unmatched vertices w.r.t. $M_+.$

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_\pm , since M and M_\pm have same cardinality.

This path must go between $oldsymbol{w}$ and $oldsymbol{q}$ as these are the only unmatched vertices w.r.t. $M_+.$

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between $oldsymbol{w}$ and $oldsymbol{q}$ as these are the only unmatched vertices w.r.t. $M_+.$

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M'_+ , as both matchings have the same cardinality.

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between $oldsymbol{w}$ and $oldsymbol{q}$ as these are the only unmatched vertices w.r.t. $M_+.$

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: *found* ← false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize $list \leftarrow \{r\}$
- 5: while $list \neq \emptyset$ do
- 6: delete a node i from list
- 7: examine(*i*, *found*)
- 8: **if** *found* = true **then return**

Search for an augmenting path starting at r.

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: *found* ← false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize $list \leftarrow \{r\}$
- 5: while $list \neq \emptyset$ do
- 6: delete a node i from list
- 7: examine(*i*, *found*)
- 8: **if** *found* = true **then return**

A(i) contains neighbours of node i.

We create a copy $\bar{A}(i)$ so that we later can shrink blossoms.

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: *found* ← false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize $list \leftarrow \{r\}$
- 5: while $list \neq \emptyset$ do
- 6: delete a node i from list
- 7: examine(*i*, *found*)
- 8: **if** *found* = true **then return**

found is just a Boolean that allows to abort the search process...

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: *found* ← false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize $list \leftarrow \{r\}$
- 5: while $list \neq \emptyset$ do
- 6: delete a node i from list
- 7: examine(*i*, *found*)
- 8: **if** *found* = true **then return**

In the beginning no node is in the tree.

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: found ← false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize $list \leftarrow \{r\}$
- 5: while $list \neq \emptyset$ do
- 6: delete a node i from list
- 7: examine(*i*, *found*)
- 8: **if** *found* = true **then return**

Put the root in the tree.

list could also be a set or a stack.

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: *found* ← false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize $list \leftarrow \{r\}$
- 5: while $list \neq \emptyset$ do
- 6: delete a node i from list
- 7: examine(*i*, *found*)
- 8: **if** *found* = true **then return**

As long as there are nodes with unexamined neighbours...

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: *found* ← false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize $list \leftarrow \{r\}$
- 5: while $list \neq \emptyset$ do
- 6: delete a node i from list
- 7: examine(*i*, *found*)
- 8: **if** *found* = true **then return**

...examine the next one

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: found ← false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize $list \leftarrow \{r\}$
- 5: while $list \neq \emptyset$ do
- 6: delete a node i from list
- 7: examine(*i*, *found*)
- 8: **if** *found* = true **then return**

If you found augmenting path abort and start from next root.

```
Algorithm 55 examine(i, found)

1: for all j \in \bar{A}(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q \leftarrow j;

5: pred(q) \leftarrow i;

6: found \leftarrow true;

7: return
```

 $pred(j) \leftarrow i$;

8:

9:

10:

11:

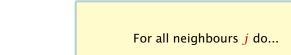
Examine the neighbours of a node $\it i$

 $pred(mate(j)) \leftarrow j$;

add mate(j) to *list*

if j is matched and unlabeled then

```
Algorithm 55 examine(i, found)
1: for all j \in \bar{A}(i) do
        if j is even then contract(i, j) and return
2:
3:
      if j is unmatched then
4:
             q \leftarrow j;
             pred(q) \leftarrow i;
5:
             found ← true;
6:
7:
             return
        if j is matched and unlabeled then
8:
             pred(j) \leftarrow i;
9:
              pred(mate(j)) \leftarrow j;
10:
```



add mate(j) to *list*

11:

```
Algorithm 55 examine(i, found)
1: for all j \in \bar{A}(i) do
        if j is even then contract(i, j) and return
2:
3:
        if j is unmatched then
4:
             q \leftarrow j;
             pred(q) \leftarrow i;
5:
             found ← true;
6:
7:
             return
        if j is matched and unlabeled then
8:
             pred(j) \leftarrow i;
9:
             pred(mate(j)) \leftarrow j;
10:
             add mate(j) to list
11:
```

You have found a blossom...

```
Algorithm 55 examine(i, found)
1: for all j \in \bar{A}(i) do
        if j is even then contract(i, j) and return
2:
3:
      if j is unmatched then
4:
             q \leftarrow j;
             pred(q) \leftarrow i;
5:
             found ← true;
6:
7:
             return
        if j is matched and unlabeled then
8:
9:
             pred(j) \leftarrow i;
              pred(mate(j)) \leftarrow j;
10:
```

You have found a free node which gives you an augmenting path.

add mate(j) to *list*

11:

```
Algorithm 55 examine(i, found)
1: for all j \in \bar{A}(i) do
        if j is even then contract(i, j) and return
2:
3:
      if j is unmatched then
4:
             q \leftarrow j;
             pred(q) \leftarrow i;
5:
             found ← true;
6:
7:
             return
        if i is matched and unlabeled then
8:
9:
             pred(j) \leftarrow i;
              pred(mate(j)) \leftarrow j;
10:
```

If you find a matched node that is not in the tree you grow...

add mate(j) to *list*

11:

```
Algorithm 55 examine(i, found)
1: for all j \in \bar{A}(i) do
        if j is even then contract(i, j) and return
2:
3:
      if j is unmatched then
4:
             q \leftarrow j;
             pred(q) \leftarrow i;
5:
             found ← true;
6:
7:
             return
        if i is matched and unlabeled then
8:
9:
             pred(j) \leftarrow i;
             pred(mate(j)) \leftarrow j;
10:
             add mate(j) to list
11:
```

mate(j) is a new node from
which you can grow further.

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Contract blossom identified by nodes *i* and *j*

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Get all nodes of the blossom.

Time: $\mathcal{O}(m)$

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Identify all neighbours of b.

Time: $\mathcal{O}(m)$ (how?)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

b will be an even node, and it has unexamined neighbours.

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Every node that was adjacent to a node in B is now adjacent to b

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Only for making a blossom expansion easier.

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Only delete links from nodes not in B to B.

When expanding the blossom again we can recreate these links in time $\mathcal{O}(m)$.

- A contraction operation can be performed in time O(m). Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- In total the running time is at most

$$n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2)$$

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- In total the running time is at most

$$n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2)$$

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- In total the running time is at most

$$n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2)$$

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- In total the running time is at most

$$n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2)$$

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- ▶ The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- In total the running time is at most

$$n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2)$$
.

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- ▶ The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- ► There are at most *n* contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time O(n). There are at most n of them.
- In total the running time is at most

$$n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2)$$
.

