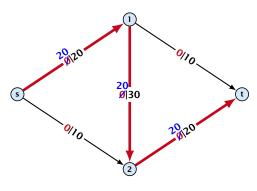
12 Augmenting Path Algorithms

Greedy-algorithm:

- ▶ start with f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible



STOREADS

© Ernst Mayr, Harald Räcke

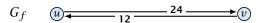
440

The Residual Graph

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- ▶ G_f has edge e_1' with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e_2' with with capacity $\max\{0, c(e_2) f(e_2) + f(e_1)\}$.

G $u \longrightarrow v$



EADS © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

. . . .

Augmenting Path Algorithm

Definition 1

An augmenting path with respect to flow f, is a path from s to t in the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 46 FordFulkerson(G = (V, E, c))

- 1: Initialize $f(e) \leftarrow 0$ for all edges.
- 2: while \exists augmenting path p in G_f do
- 3: augment as much flow along p as possible.

Augmenting Path Algorithm

Animation for augmenting path algorithms is only available in the lecture version of the slides.

Augmenting Path Algorithm

Theorem 2

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- 1. There exists a cut A, B such that val(f) = cap(A, B).
- **2.** Flow f is a maximum flow.
- **3.** There is no augmenting path w.r.t. f.

П

EADS © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

. . . .

Augmenting Path Algorithm

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
$$= \sum_{e \in out(A)} c(e)$$
$$= cap(A, V \setminus A)$$

This finishes the proof.

Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

Augmenting Path Algorithm

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

- $3. \Rightarrow 1.$
 - Let *f* be a flow with no augmenting paths.
 - Let *A* be the set of vertices reachable from *s* in the residual graph along non-zero capacity edges.
 - ▶ Since there is no augmenting path we have $s \in A$ and $t \notin A$.

EADS © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

445

Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

© Ernst Mayr, Harald Räcke

Every flow value f(e) and every residual capacity $c_f(e)$ remains integral troughout the algorithm.

Lemma 4

The algorithm terminates in at most $val(f^*) \le nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time O(m). This gives a total running time of $\mathcal{O}(nmC)$.

Theorem 5

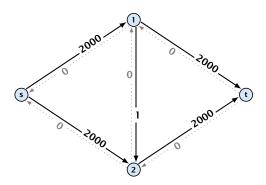
If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

© Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

A Bad Input

Problem: The running time may not be polynomial.



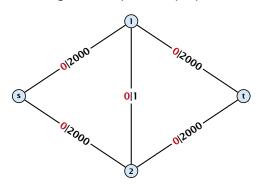
Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

> See the lecture-version of the slides for the animation.

A Bad Input

Problem: The running time may not be polynomial.



Ouestion:

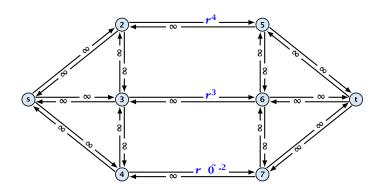
Can we tweak the algorithm so that the running time is polynomial in the input length?

EADS © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

A Pathological Input

Let $r = \frac{1}{2}(\sqrt{5} - 1)$. Then $r^{n+2} = r^n - r^{n+1}$.



Running time may be infinite!!!

See the lecture-version of the slides for the animation.

How to choose augmenting paths?

- ▶ We need to find paths efficiently.
- ▶ We want to guarantee a small number of iterations.

Several possibilities:

- ▶ Choose path with maximum bottleneck capacity.
- ▶ Choose path with sufficiently large bottleneck capacity.
- ► Choose the shortest augmenting path.

© Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

452

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 8

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. This gives a running time of $\mathcal{O}(m^2n)$.

Proof.

- We can find the shortest augmenting paths in time $\mathcal{O}(m)$ via BFS.
- $ightharpoonup \mathcal{O}(m)$ augmentations for paths of exactly k < n edges.

454

Overview: Shortest Augmenting Paths

Lemma 6

The length of the shortest augmenting path never decreases.

Lemma 7

After at most O(m) augmentations, the length of the shortest augmenting path strictly increases.

EADS © Ernst Mayr, Harald Räcke

12.2 Shortest Augmenting Paths

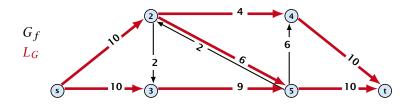
453

Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest s-v path in G_f .

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u, v) with $\ell(v) = \ell(u) + 1$.

A path P is a shortest s-u path in G_f if it is a an s-u path in L_G .



EADS © Ernst Mayr, Harald Räcke

12.2 Shortest Augmenting Paths

455

In the following we assume that the residual graph \mathcal{G}_f does not contain zero capacity edges.

This means, we construct it in the usual sense and then delete edges of zero capacity.

EADS © Ernst Mayr, Harald Räcke 12.2 Shortest Augmenting Paths

450

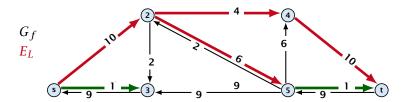
Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An s-t path in G_f that does use edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L .



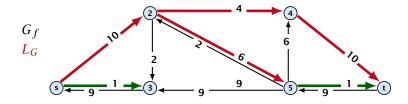
Shortest Augmenting Path

First Lemma:

The length of the shortest augmenting path never decreases.

- After an augmentation the following changes are done in G_f .
- Some edges of the chosen path may be deleted (bottleneck edges).
- ► Back edges are added to all edges that don't have back edges so far.

These changes cannot decrease the distance between s and t.



Shortest Augmenting Paths

Theorem 9

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. Each augmentation can be performed in time $\mathcal{O}(m)$.

Theorem 10 (without proof)

There exist networks with $m = \Theta(n^2)$ that require O(mn) augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a maximum flow.

EADS © Ernst Mayr, Ha<u>rald Räcke</u> 12.2 Shortest Augmenting Paths

459

Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $\mathcal{O}(mn^2)$ by improving the running time for finding an augmenting path (currently we assume $\mathcal{O}(m)$ per augmentation for this).

EADS © Ernst Mayr, Harald Räcke 12.2 Shortest Augmenting Paths

460

462

Suppose that the initial distance between s and t in G_f is k.

 E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_L .

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from E_L .

Shortest Augmenting Paths

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest s-t path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L .

When E_L does not contain an s-t path anymore the distance between s and t strictly increases.

Note that E_L is not the set of edges of the level graph but a subset of level-graph edges.

EADS © Ernst Mayr, Harald Räcke 12.2 Shortest Augmenting Paths

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(mn)$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}(mn^2)$.

How to choose augmenting paths?

- ▶ We need to find paths efficiently.
- ▶ We want to guarantee a small number of iterations.

Several possibilities:

- ▶ Choose path with maximum bottleneck capacity.
- ▶ Choose path with sufficiently large bottleneck capacity.
- ► Choose the shortest augmenting path.

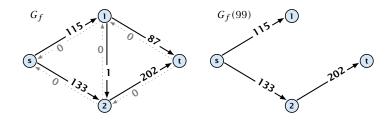
EADS © Ernst Mayr, Harald Räcke 12.3 Capacity Scaling

464

Capacity Scaling

Intuition:

- ► Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .



12.3 Capacity Scaling

EADS © Ernst Mayr, Harald Räcke

465

Capacity Scaling

Algorithm 45 maxflow(G, s, t, c)

```
1: foreach e \in E do f_e \leftarrow 0;
2: \Delta \leftarrow 2^{\lceil \log_2 C \rceil}
3: while \Delta \geq 1 do
           G_f(\Delta) \leftarrow \Delta-residual graph
           while there is augmenting path P in G_f(\Delta) do
5:
                  f \leftarrow \operatorname{augment}(f, c, P)
6:
                  update(G_f(\Delta))
           \Delta \leftarrow \Delta/2
9: return f
```

12.3 Capacity Scaling

Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.

466

EADS

Capacity Scaling

Lemma 11

There are $\lceil \log C \rceil$ *iterations over* Δ .

Proof: obvious.

Lemma 12

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + m\Delta$.

Proof: less obvious, but simple:

- ▶ There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
- ▶ In G_f this cut can have capacity at most $m\Delta$.
- ▶ This gives me an upper bound on the flow that I can still add.

12.3 Capacity Scaling

468

Capacity Scaling

Lemma 13

There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- $\operatorname{val}(f^*) \le \operatorname{val}(f) + 2m\Delta$
- ▶ Each augmentation increases flow by Δ .

Theorem 14

We need $O(m \log C)$ augmentations. The algorithm can be implemented in time $\mathcal{O}(m^2 \log C)$.

EADS © Ernst Mayr, Harald Räcke

12.3 Capacity Scaling