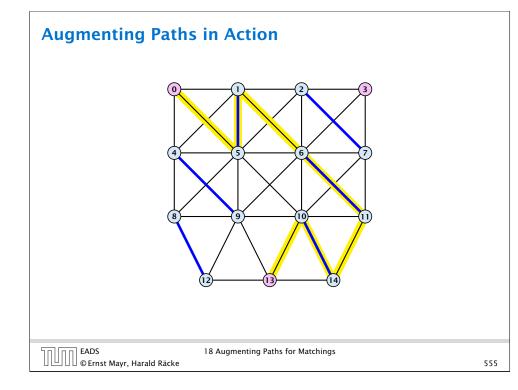
17 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.

	17 Bipartite Matching via Flows	
🛛 💾 🗋 🖉 Ernst Mayr, Harald Räcke		553



18 Augmenting Paths for Matchings

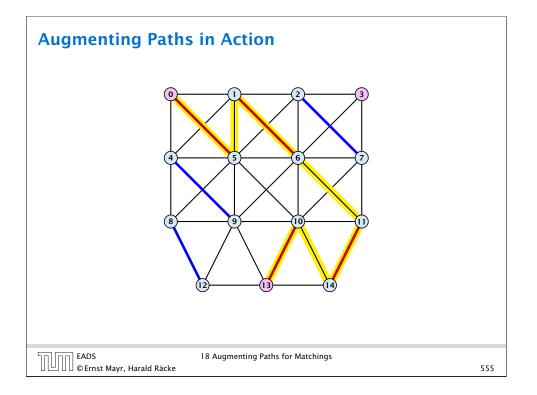
Definitions.

- Given a matching *M* in a graph *G*, a vertex that is not incident to any edge of *M* is called a free vertex w.r..t. *M*.
- ► For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching *M* if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path w. r. t. M.

EADS © Ernst Mayr, Harald Räcke	18 Augmenting Paths for Matchings	
🛛 🕒 🖓 🖾 © Ernst Mayr, Harald Räcke		554



18 Augmenting Paths for Matchings

Proof.

- ⇒ If *M* is maximum there is no augmenting path *P*, because we could switch matching and non-matching edges along *P*. This gives matching $M' = M \oplus P$ with larger cardinality.
- $\Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set <math>M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

	18 Augmenting Paths for Matchings	
🛛 🕒 🖯 🖾 © Ernst Mayr, Harald Räcke		556

18 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (£).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P₁. Denote the sub-path of P' from u to u' with P'₁.
- $P_1 \circ P'_1$ is augmenting path in M (4).

)
	P ₁
P'	
	D., P P

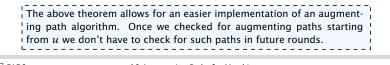
18 Augmenting Paths for Matchings

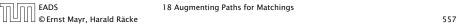
Algorithmic idea:

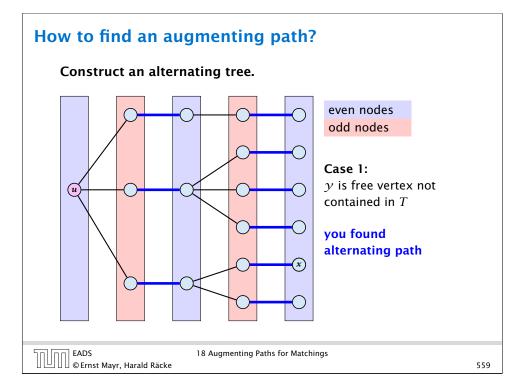
As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

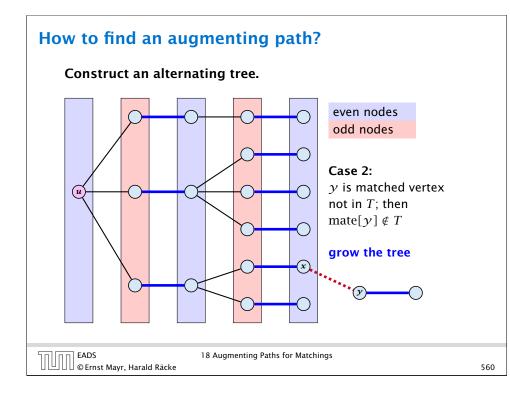
Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

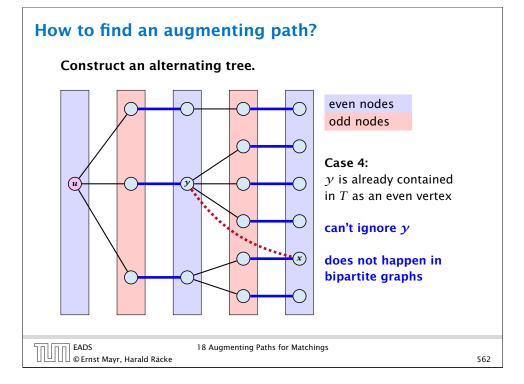






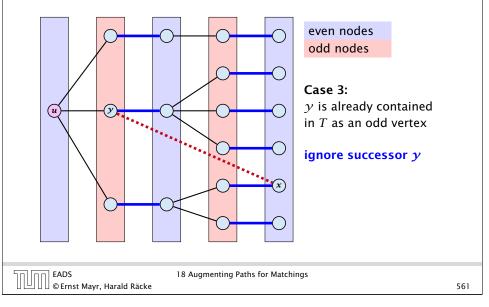
18 Augmenting Paths for Matchings





How to find an augmenting path?

Construct an alternating tree.



	rithm 52 BiMatch(<i>G</i> , <i>match</i>)	
	or $x \in V$ do mate[x] $\leftarrow 0$;	
	$\leftarrow 0$; free $\leftarrow n$;	
3: N	while $free \ge 1$ and $r < n$ do	graph $G = (S \cup S', E)$
4:	$r \leftarrow r + 1$	
5:	if $mate[r] = 0$ then	$S = \{1, \dots, n\}$
6:	for $i = 1$ to m do $parent[i'] \leftarrow 0$	$S' = \{1',, n'\}$
7:	$Q \leftarrow \emptyset$; Q . append (r) ; $aug \leftarrow$ false;	
8:	while $aug = false$ and $Q \neq \emptyset$ do	
9:	$x \leftarrow Q.$ dequeue();	
10:	for $y \in A_x$ do	
11:	if $mate[y] = 0$ then	
12:	augm(<i>mate</i> , <i>parent</i> , <i>y</i>);	
13:	$aug \leftarrow true;$	
14:	free \leftarrow free -1 ;	
15:	else	
16:	if $parent[y] = 0$ then	
17:	$parent[y] \leftarrow x;$	
18:	Q .enqueue(<i>mate</i> [γ]);	The lecture version of the slides contains a step-by-step explana