17 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}\left(m \operatorname{val}\left(f^{*}\right)\right)=\mathcal{O}(m n)$.
- Capacity scaling: $\mathcal{O}\left(m^{2} \log C\right)=\mathcal{O}\left(m^{2}\right)$.

Augmenting Paths in Action

18 Augmenting Paths for Matchings

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r. .t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 1
A matching M is a maximum matching if and only if there is no augmenting path w.r.t. M.

Augmenting Paths in Action

18 Augmenting Paths for Matchings

Proof.

\Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M^{\prime}=M \oplus P$ with larger cardinality.
\Leftarrow Suppose there is a matching M^{\prime} with larger cardinality. Consider the graph H with edge-set $M^{\prime} \oplus M$ (i.e., only edges that are in either M or M^{\prime} but not in both).

Each vertex can be incident to at most two edges (one from M and one from M^{\prime}). Hence, the connected components are alternating cycles or alternating path.

As $\left|M^{\prime}\right|>|M|$ there is one connected component that is a path P for which both endpoints are incident to edges from $M^{\prime} . P$ is an alternating path.

18 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is also augmenting path w.r.t. M (z).
- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.
- u^{\prime} splits P into two parts one of which does not contain e. Call this part P_{1}. Denote the sub-path of P^{\prime} from u to u^{\prime} with P_{1}^{\prime}.
- $P_{1} \circ P_{1}^{\prime}$ is augmenting path in $M(\xi)$.

18 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M^{\prime}=M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M^{\prime}.

> The above theorem allows for an easier implementation of an augment
> ing path algorithm. Once we checked for augmenting paths starting from u we don't have to check for such paths in future rounds.

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 1: y is free vertex not contained in T
you found alternating path

How to find an augmenting path?

Construct an alternating tree.

Case 2:

y is matched vertex not in T; then mate $[y] \notin T$ grow the tree

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4:

y is already contained in T as an even vertex
can't ignore y
does not happen in bipartite graphs

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 3:

y is already contained in T as an odd vertex
ignore successor y
graph $G=\left(S \cup S^{\prime}, E\right)$

$$
S=\{1, \ldots, n\}
$$

$$
S^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}
$$

 contains a step-by-step explanation of the algorithm.

