Definitions.

- Given a matching *M* in a graph *G*, a vertex that is not incident to any edge of *M* is called a free vertex w.r..t. *M*.
- ▶ For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path w. r. t. M.

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- ► For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path w. r. t. M.

18 Augmenting Paths for Matchings

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶
554/609

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- ▶ For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching *M* if it ends at distinct free vertices.

Theorem 1

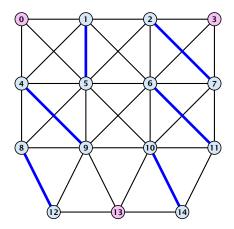
A matching M is a maximum matching if and only if there is no augmenting path w. r. t. M.

Definitions.

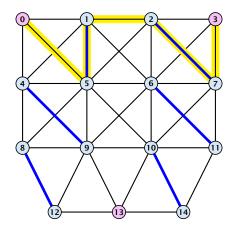
- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- ► For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching *M* if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path w. r. t. M.

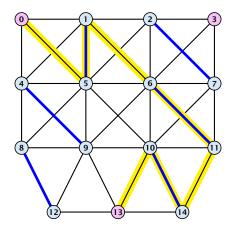


18 Augmenting Paths for Matchings

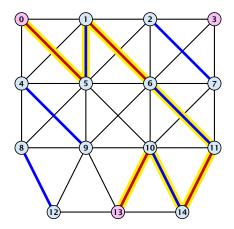


18 Augmenting Paths for Matchings

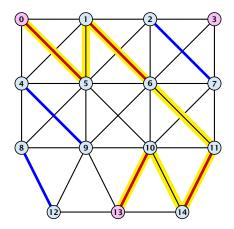
◆ @ ▶ ◆ 注 ▶ ◆ 注 ▶ 555/609



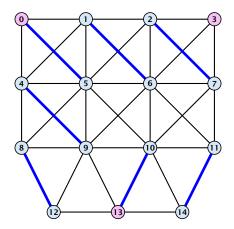
18 Augmenting Paths for Matchings



18 Augmenting Paths for Matchings



18 Augmenting Paths for Matchings



18 Augmenting Paths for Matchings

Proof.

- ⇒ If *M* is maximum there is no augmenting path *P*, because we could switch matching and non-matching edges along *P*. This gives matching $M' = M \oplus P$ with larger cardinality.
- \Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

Proof.

- ⇒ If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching M' = M ⊕ P with larger cardinality.
- $\leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set M' \oplus M (i.e., only edges that are in either M or M' but not in both).$

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

Proof.

- ⇒ If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching M' = M ⊕ P with larger cardinality.
- $\Leftarrow Suppose there is a matching M' with larger cardinality.$ $Consider the graph H with edge-set <math>M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path *P* for which both endpoints are incident to edges from *M'*. *P* is an alternating path.

Proof.

- ⇒ If *M* is maximum there is no augmenting path *P*, because we could switch matching and non-matching edges along *P*. This gives matching $M' = M \oplus P$ with larger cardinality.
- $\leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set M' \oplus M (i.e., only edges that are in either M or M' but not in both).$

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

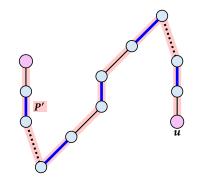
Proof

18 Augmenting Paths for Matchings

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 558/609

Proof

Assume there is an augmenting path P' w.r.t. M' starting at u.

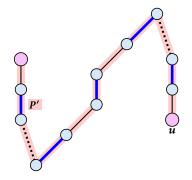


18 Augmenting Paths for Matchings

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶
558/609

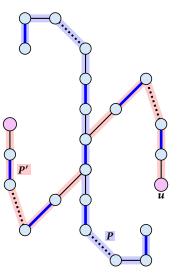
Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- ► If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (£).



Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- ► If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (£).

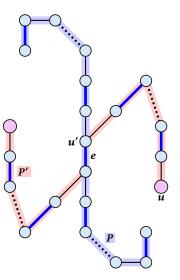


18 Augmenting Paths for Matchings

◆ 個 ト ◆ ヨ ト ◆ ヨ ト 558/609

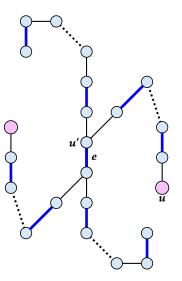
Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (f).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.



Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (£).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.

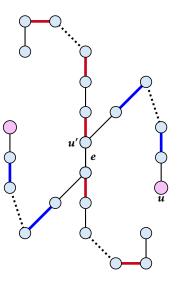


18 Augmenting Paths for Matchings

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 558/609

Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (f).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.

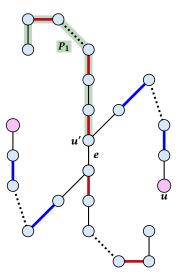


18 Augmenting Paths for Matchings

▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶ 558/609

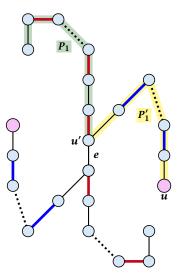
Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (𝔅).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P₁. Denote the sub-path of P' from u to u' with P'₁.



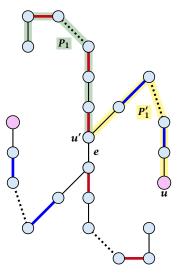
Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (𝔅).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P₁. Denote the sub-path of P' from u to u' with P'₁.

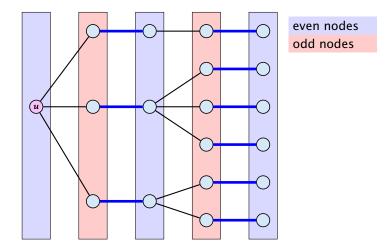


Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (𝔅).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P₁. Denote the sub-path of P' from u to u' with P'₁.
- $P_1 \circ P'_1$ is augmenting path in M (ℓ).



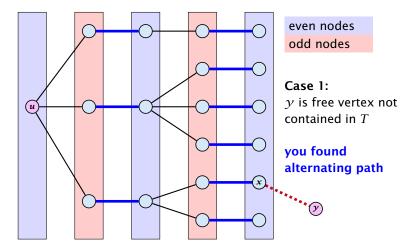
Construct an alternating tree.



18 Augmenting Paths for Matchings

▲ @ ▶ ▲ 臺 ▶ ▲ 臺 ▶ 559/609

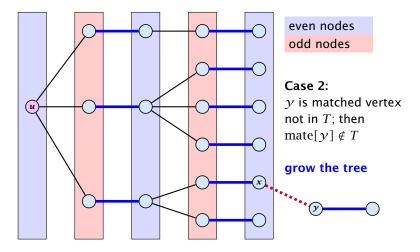
Construct an alternating tree.



18 Augmenting Paths for Matchings

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 559/609

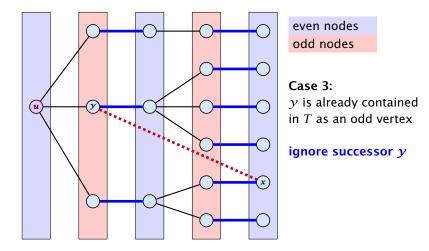
Construct an alternating tree.



18 Augmenting Paths for Matchings

▲ 個 ▶ ▲ 聖 ▶ ▲ 聖 ▶ 560/609

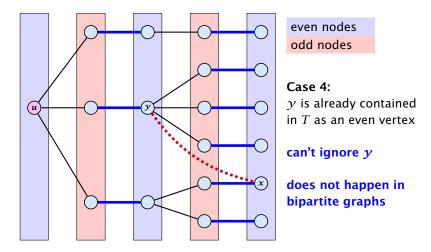
Construct an alternating tree.



18 Augmenting Paths for Matchings

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 561/609

Construct an alternating tree.



EADS © Ernst Mayr, Harald Räcke 18 Augmenting Paths for Matchings

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 562/609 Algorithm 52 BiMatch(*G*, *match*)

```
1: for x \in V do mate[x] \leftarrow 0:
2: r \leftarrow 0; free \leftarrow n;
 3: while free \geq 1 and r < n do
4: r \leftarrow r + 1
5: if mate[r] = 0 then
6:
           for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
           while aug = false and Q \neq \emptyset do
8:
9:
               x \leftarrow O. dequeue();
10:
               for \gamma \in A_{\chi} do
11:
                   if mate[\gamma] = 0 then
12:
                       augm(mate, parent, \gamma);
13:
                       aug \leftarrow true;
14.
                       free \leftarrow free -1;
15:
                   else
16:
                       if parent[\gamma] = 0 then
17:
                           parent[y] \leftarrow x;
                           Q.enqueue(mate[\gamma]);
18:
```

```
graph G = (S \cup S', E)

S = \{1, ..., n\}

S' = \{1', ..., n'\}
```

Algorithm 52 BiMatch(*G*, *match*)

1: for $x \in V$ do mate[x] \leftarrow 0;

```
2: r \leftarrow 0; free \leftarrow n;
 3: while free \geq 1 and r < n do
4: r \leftarrow r + 1
5: if mate[r] = 0 then
6:
           for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
           while aug = false and Q \neq \emptyset do
8:
9:
               x \leftarrow O. dequeue();
10:
               for \gamma \in A_{\chi} do
11:
                   if mate[\gamma] = 0 then
12:
                       augm(mate, parent, \gamma);
13:
                       aug \leftarrow true;
14.
                       free \leftarrow free -1;
15:
                   else
16:
                       if parent[y] = 0 then
17:
                           parent[\gamma] \leftarrow x;
                           Q.enqueue(mate[\gamma]);
18:
```

start with an empty matching Algorithm 52 BiMatch(*G*, *match*)

```
1: for x \in V do mate[x] \leftarrow 0;
2: r \leftarrow 0; free \leftarrow n;
 3: while free \geq 1 and r < n do
4: r \leftarrow r + 1
5: if mate[r] = 0 then
6:
           for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
           while aug = false and Q \neq \emptyset do
8:
9:
               x \leftarrow O. dequeue();
10:
               for \gamma \in A_{\chi} do
11:
                   if mate[\gamma] = 0 then
12:
                       augm(mate, parent, \gamma);
13:
                       aug \leftarrow true;
14.
                       free \leftarrow free -1;
15:
                   else
16:
                       if parent[y] = 0 then
17:
                           parent[\gamma] \leftarrow x;
                           Q.enqueue(mate[\gamma]);
18:
```

free: number of unmatched nodes in *S*

r: root of current tree

Algorithm 52 BiMatch(*G*, *match*) 1: for $x \in V$ do mate[x] \leftarrow 0: 2: $r \leftarrow 0$; free $\leftarrow n$; 3: while *free* ≥ 1 and *r* < *n* do 4: $r \leftarrow r + 1$ 5: if mate[r] = 0 then 6: for i = 1 to m do parent[i'] $\leftarrow 0$ 7: $Q \leftarrow \emptyset; Q$. append $(r); aug \leftarrow false;$ while aug = false and $Q \neq \emptyset$ do 8: 9: $x \leftarrow O.$ dequeue(); 10: for $\gamma \in A_{\chi}$ do 11: if $mate[\gamma] = 0$ then 12: $augm(mate, parent, \gamma);$ 13: $aug \leftarrow true;$ 14. free \leftarrow free -1; 15: else 16: if parent[y] = 0 then 17: parent[γ] $\leftarrow x$; *Q*.enqueue(*mate*[γ]); 18:

as long as there are unmatched nodes and we did not yet try to grow from all nodes we continue

Algorithm 52 BiMatch(G, match)	
1:	for $x \in V$ do $mate[x] \leftarrow 0$;
2:	$r \leftarrow 0$; free $\leftarrow n$;
3:	while $free \ge 1$ and $r < n$ do
4:	$r \leftarrow r + 1$
5:	if $mate[r] = 0$ then
6:	for $i = 1$ to m do $parent[i'] \leftarrow 0$
7:	$Q \leftarrow \emptyset; Q. \operatorname{append}(r); aug \leftarrow \operatorname{false};$
8:	while $aug = false$ and $Q \neq \emptyset$ do
9:	$x \leftarrow Q.$ dequeue();
10:	for $\mathcal{Y} \in A_X$ do
11:	if $mate[y] = 0$ then
12:	augm(mate, parent, y);
13:	<i>aug</i> ← true;
14:	<i>free</i> \leftarrow <i>free</i> -1 ;
15:	else
16:	if $parent[y] = 0$ then
17:	$parent[y] \leftarrow x;$
18:	Q .enqueue(<i>mate</i> [γ]);

r is the new node that we grow from.

Algorithm 52 BiMatch(G, match)		
1: for $x \in V$ do mate[x] $\leftarrow 0$;		
2: $r \leftarrow 0$; free $\leftarrow n$;		
3: while $free \ge 1$ and $r < n$ do		
4: $\gamma \leftarrow \gamma + 1$		
5: if $mate[r] = 0$ then		
6: for $i = 1$ to m do $parent[i'] \leftarrow 0$		
7: $Q \leftarrow \emptyset; Q. \operatorname{append}(r); aug \leftarrow \operatorname{false};$		
8: while $aug = false and Q \neq \emptyset$ do		
9: $x \leftarrow Q.$ dequeue();		
10: for $y \in A_x$ do		
11: if $mate[y] = 0$ then		
12: augm(<i>mate</i> , <i>parent</i> , <i>y</i>);		
13: $aug \leftarrow true;$		
14: $free \leftarrow free - 1;$		
15: else		
16: if $parent[y] = 0$ then		
17: $parent[y] \leftarrow x;$		
18: $Q. enqueue(mate[y]);$		

If *r* is free start tree construction

1:	for $x \in V$ do mate[x] $\leftarrow 0$;
2:	$r \leftarrow 0$; free $\leftarrow n$;
3:	while $free \ge 1$ and $r < n$ do
4:	$r \leftarrow r + 1$
5:	if $mate[r] = 0$ then
6:	for $i = 1$ to m do $parent[i'] \leftarrow 0$
7:	$Q \leftarrow \emptyset$; Q . append (r) ; $aug \leftarrow$ false;
8:	while $aug = false$ and $Q \neq \emptyset$ do
9:	$x \leftarrow Q.$ dequeue();
10:	for $\gamma \in A_x$ do
11:	if $mate[y] = 0$ then
12:	augm(<i>mate</i> , <i>parent</i> , <i>y</i>);
13:	<i>aug</i> ← true;
14:	<i>free</i> \leftarrow <i>free</i> -1 ;
15:	else
16:	if $parent[y] = 0$ then
17:	$parent[y] \leftarrow x;$
18:	Q.enqueue(<i>mate</i> [y]);

Initialize an empty tree. Note that only nodes i' have parent pointers.

```
1: for x \in V do mate[x] \leftarrow 0:
2: r \leftarrow 0; free \leftarrow n;
 3: while free \geq 1 and r < n do
4: r \leftarrow r + 1
5: if mate[r] = 0 then
6:
           for i = 1 to m do parent[i'] \leftarrow 0
           Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
7:
           while aug = false and Q \neq \emptyset do
8:
9:
               x \leftarrow O. dequeue();
10:
                for \gamma \in A_{\chi} do
11:
                    if mate[\gamma] = 0 then
12:
                        augm(mate, parent, \gamma);
13:
                       aug \leftarrow true;
14.
                       free \leftarrow free -1;
15:
                    else
16:
                       if parent[y] = 0 then
17:
                           parent[\gamma] \leftarrow x;
                           Q.enqueue(mate[\gamma]);
18:
```

Q is a queue (BFS!!!).

aug is a Boolean that stores whether we already found an augmenting path.

1:	for $x \in V$ do mate[x] $\leftarrow 0$;
2:	$r \leftarrow 0$; free $\leftarrow n$;
3:	while $free \ge 1$ and $r < n$ do
4:	$r \leftarrow r + 1$
5:	if $mate[r] = 0$ then
6:	for $i = 1$ to m do $parent[i'] \leftarrow 0$
7:	$Q \leftarrow \emptyset$; Q . append (r) ; $aug \leftarrow$ false;
8:	while $aug = false$ and $Q \neq \emptyset$ do
9:	$x \leftarrow Q.$ dequeue();
10:	for $\mathcal{Y} \in A_{\mathcal{X}}$ do
11:	if $mate[y] = 0$ then
12:	augm(mate, parent, y);
13:	<i>aug</i> ← true;
14:	<i>free</i> \leftarrow <i>free</i> -1 ;
15:	else
16:	if $parent[y] = 0$ then
17:	$parent[y] \leftarrow x;$
18:	Q .enqueue(<i>mate</i> [γ]);

as long as we did not augment and there are still unexamined leaves continue...

1:	for $x \in V$ do <i>mate</i> [x] \leftarrow 0;
2:	$r \leftarrow 0$; free $\leftarrow n$;
3:	while $free \ge 1$ and $r < n$ do
4:	$r \leftarrow r + 1$
5:	if $mate[r] = 0$ then
6:	for $i = 1$ to m do $parent[i'] \leftarrow 0$
7:	$Q \leftarrow \emptyset$; Q . append (r) ; $aug \leftarrow$ false;
8:	while $aug = false$ and $Q \neq \emptyset$ do
9:	$x \leftarrow Q.$ dequeue();
10:	for $\mathcal{Y} \in A_{\mathcal{X}}$ do
11:	if $mate[y] = 0$ then
12:	augm(mate, parent, y);
13:	<i>aug</i> ← true;
14:	free \leftarrow free -1 ;
15:	else
16:	if $parent[y] = 0$ then
17:	$parent[y] \leftarrow x;$
18:	Q.enqueue(<i>mate</i> [y]);

take next unexamined leaf

```
1: for x \in V do mate[x] \leftarrow 0:
2: r \leftarrow 0; free \leftarrow n;
 3: while free \geq 1 and r < n do
4: r \leftarrow r + 1
5: if mate[r] = 0 then
6:
           for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
           while aug = false and Q \neq \emptyset do
8:
9:
               x \leftarrow O. dequeue();
10:
                for \gamma \in A_{\chi} do
11:
                   if mate [\gamma] = 0 then
12:
                       augm(mate, parent, \gamma);
13:
                       aug \leftarrow true;
14.
                       free \leftarrow free -1;
15:
                   else
16:
                       if parent[y] = 0 then
17:
                           parent[\gamma] \leftarrow x;
                           Q.enqueue(mate[\gamma]);
18:
```

if x has unmatched neighbour we found an augmenting path (note that $y \neq r$ because we are in a bipartite graph)

```
1: for x \in V do mate[x] \leftarrow 0:
2: r \leftarrow 0; free \leftarrow n;
 3: while free \geq 1 and r < n do
4: r \leftarrow r + 1
5: if mate[r] = 0 then
6:
           for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
           while aug = false and Q \neq \emptyset do
8:
9:
               x \leftarrow O. dequeue();
10:
               for \gamma \in A_{\chi} do
11:
                   if mate[\gamma] = 0 then
12:
                       augm(mate, parent, \gamma);
13:
                       aug \leftarrow true;
14.
                       free \leftarrow free -1;
15:
                   else
16:
                       if parent[y] = 0 then
17:
                           parent[\gamma] \leftarrow x;
                           Q.enqueue(mate[\gamma]);
18:
```

do an augmentation...

```
1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \geq 1 and r < n do
 4: r \leftarrow r + 1
 5: if mate[r] = 0 then
6:
           for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
           while aug = false and Q \neq \emptyset do
8:
9:
               x \leftarrow O. dequeue();
10:
                for \gamma \in A_{\chi} do
11:
                    if mate[\gamma] = 0 then
12:
                        augm(mate, parent, \gamma);
13:
                        aug \leftarrow true;
14:
                       free \leftarrow free -1;
15:
                    else
16:
                       if parent[y] = 0 then
17:
                           parent[\gamma] \leftarrow x;
                           Q.enqueue(mate[\gamma]);
18:
```

setting *aug* = true ensures that the tree construction will not continue

```
1: for x \in V do mate[x] \leftarrow 0:
2: r \leftarrow 0; free \leftarrow n;
 3: while free \geq 1 and r < n do
4: r \leftarrow r + 1
5: if mate[r] = 0 then
6:
           for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
           while aug = false and Q \neq \emptyset do
8:
9:
               x \leftarrow O. dequeue();
10:
               for \gamma \in A_{\chi} do
11:
                   if mate[\gamma] = 0 then
12:
                       augm(mate, parent, \gamma);
13:
                       aug \leftarrow true;
14:
                       free \leftarrow free -1;
                   else
15:
                       if parent[y] = 0 then
16:
                           parent[\gamma] \leftarrow x;
17:
                           Q.enqueue(mate[\gamma]);
18:
```

reduce number of free nodes

```
1: for x \in V do mate[x] \leftarrow 0:
2: r \leftarrow 0; free \leftarrow n;
 3: while free \geq 1 and r < n do
4: r \leftarrow r + 1
5: if mate[r] = 0 then
6:
           for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
           while aug = false and Q \neq \emptyset do
8:
9:
               x \leftarrow O. dequeue();
10:
               for \gamma \in A_{\chi} do
11:
                   if mate[\gamma] = 0 then
12:
                       augm(mate, parent, \gamma);
13:
                       aug \leftarrow true;
14.
                       free \leftarrow free -1;
                   else
15:
16:
                       if parent[y] = 0 then
                           parent[\gamma] \leftarrow x;
17:
                           Q.enqueue(mate[\gamma]);
18:
```

if y is not in the tree yet

```
1: for x \in V do mate[x] \leftarrow 0:
2: r \leftarrow 0; free \leftarrow n;
 3: while free \geq 1 and r < n do
4: r \leftarrow r + 1
5: if mate[r] = 0 then
6:
           for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
           while aug = false and Q \neq \emptyset do
8:
9:
               x \leftarrow O. dequeue();
10:
               for \gamma \in A_{\chi} do
11:
                   if mate[\gamma] = 0 then
12:
                       augm(mate, parent, \gamma);
13:
                       aug \leftarrow true;
14.
                       free \leftarrow free -1;
                   else
15:
                       if parent[\gamma] = 0 then
16:
                           parent[\gamma] \leftarrow x;
17:
                           Q.enqueue(mate[\gamma]);
18:
```

...put it into the tree

```
1: for x \in V do mate[x] \leftarrow 0:
2: r \leftarrow 0; free \leftarrow n;
 3: while free \geq 1 and r < n do
4: r \leftarrow r + 1
5: if mate[r] = 0 then
6:
           for i = 1 to m do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
           while aug = false and Q \neq \emptyset do
8:
9:
               x \leftarrow O. dequeue();
10:
               for \gamma \in A_{\chi} do
11:
                   if mate[\gamma] = 0 then
12:
                       augm(mate, parent, \gamma);
13:
                       aug \leftarrow true;
14.
                       free \leftarrow free -1;
15:
                   else
16:
                       if parent[y] = 0 then
                           parent[\gamma] \leftarrow x;
17:
                           O.enqueue(mate[\gamma]);
18:
```

add its buddy to the set of unexamined leaves