6 Recurrences

Algorithm 2 mergesort(list L) 1: $n \leftarrow size(L)$ 2: if $n \le 1$ return L 3: $L_1 \leftarrow L[1 \cdots \lfloor \frac{n}{2} \rfloor]$ 4: $L_2 \leftarrow L[\lfloor \frac{n}{2} \rfloor + 1 \cdots n]$ 5: mergesort(L_1) 6: mergesort(L_2) 7: $L \leftarrow merge(L_1, L_2)$ 8: return L

This algorithm requires

 $T(n) = T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + \mathcal{O}(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + \mathcal{O}(n)$

comparisons when n > 1 and 0 comparisons when $n \le 1$.

EADS © Ernst Mayr, Harald Räcke ▲ □ ▶ < □ ▶ < □ ▶
 42/609

6 Recurrences

Algorithm 2 mergesort(list *L*) 1: $n \leftarrow \text{size}(L)$ 2: if $n \le 1$ return *L* 3: $L_1 \leftarrow L[1 \cdots \lfloor \frac{n}{2} \rfloor]$ 4: $L_2 \leftarrow L[\lfloor \frac{n}{2} \rfloor + 1 \cdots n]$ 5: mergesort(L_1) 6: mergesort(L_2) 7: $L \leftarrow \text{merge}(L_1, L_2)$ 8: return *L*

This algorithm requires

$$T(n) = T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + \mathcal{O}(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + \mathcal{O}(n)$$

comparisons when n > 1 and 0 comparisons when $n \le 1$.

Recurrences

How do we bring the expression for the number of comparisons (\approx running time) into a closed form?

For this we need to solve the recurrence.

How do we bring the expression for the number of comparisons (\approx running time) into a closed form?

For this we need to solve the recurrence.

Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of algorithms this theorem can be used to obtain tight asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this method.

Methods for Solving Recurrences

4. Generating Functions

A more general technique that allows to solve certain types of linear inhomogenous relations and also sometimes non-linear recurrence relations.

5. Transformation of the Recurrence

Sometimes one can transform the given recurrence relations so that it e.g. becomes linear and can therefore be solved with one of the other techniques.

First we need to get rid of the \mathcal{O} -notation in our recurrence:

$$T(n) \leq \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

Assume that instead we had

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

<日本 ● ● < 目 → < 目 → 46/609

First we need to get rid of the \mathcal{O} -notation in our recurrence:

$$T(n) \leq \begin{cases} 2T(\left\lceil \frac{n}{2} \right\rceil) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

Assume that instead we had

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

First we need to get rid of the \mathcal{O} -notation in our recurrence:

$$T(n) \leq \begin{cases} 2T(\left\lceil \frac{n}{2} \right\rceil) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

Assume that instead we had

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

Suppose we guess $T(n) \le dn \log n$ for a constant *d*.

6.1 Guessing+Induction

Suppose we guess $T(n) \le dn \log n$ for a constant *d*. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

6.1 Guessing+Induction

◆ 母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 47/609

Suppose we guess $T(n) \le dn \log n$ for a constant *d*. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$

6.1 Guessing+Induction

◆ @ ▶ ◆ 臣 ▶ **◆** 臣 ▶ 47/609

Suppose we guess $T(n) \le dn \log n$ for a constant *d*. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$

6.1 Guessing+Induction

Suppose we guess $T(n) \le dn \log n$ for a constant *d*. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$
$$= dn\log n + (c - d)n$$

6.1 Guessing+Induction

◆ 個 ▶ ◆ 聖 ▶ ◆ 聖 ▶ 47/609

,

Suppose we guess $T(n) \le dn \log n$ for a constant *d*. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$
$$= dn\log n + (c - d)n$$
$$\le dn\log n$$

if we choose $d \ge c$.

6.1 Guessing+Induction

Suppose we guess $T(n) \le dn \log n$ for a constant *d*. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$= dn\log n + (c - d)n$$

$$\le dn\log n$$

if we choose $d \ge c$.

Formally one would make an induction proof, where the above is the induction step. The base case is usually trivial.

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \leq dn \log n$.

 $T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

▶ base case (2 ≤ n < 16):</p>

$$T(n) \leq \left\{ egin{array}{cc} 2T(rac{n}{2})+cn & n\geq 16 \\ b & ext{otw.} \end{array}
ight.$$

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16 \\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

base case $(2 \le n < 16)$: true if we choose $d \ge b$.

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$
$$= dn\log n + (c - d)n$$

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$
$$= dn\log n + (c - d)n$$
$$\le dn\log n$$

$$T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16\\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- induction step $2 \dots n 1 \rightarrow n$:

Suppose statem. is true for $n' \in \{2, ..., n-1\}$, and $n \ge 16$. We prove it for n:

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$
$$= dn\log n + (c - d)n$$
$$\le dn\log n$$

Hence, statement is true if we choose $d \ge c$.

Why did we change the recurrence by getting rid of the ceiling?

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following recurrence:

$$T(n) \le \begin{cases} 2T(\left\lceil \frac{n}{2} \right\rceil) + cn & n \ge 16\\ b & \text{otherwise} \end{cases}$$

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following recurrence:

$$T(n) \le \begin{cases} 2T(\left\lceil \frac{n}{2} \right\rceil) + cn & n \ge 16\\ b & \text{otherwise} \end{cases}$$

Note that we can do this as for constant-sized inputs the running time is always some constant (*b* in the above case).

We also make a guess of $T(n) \leq dn \log n$ and get

T(n)

6.1 Guessing+Induction

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 50/609

We also make a guess of $T(n) \le dn \log n$ and get

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

6.1 Guessing+Induction

We also make a guess of $T(n) \le dn \log n$ and get

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$
$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

6.1 Guessing+Induction

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 50/609

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$
$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$
$$\left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 1$$

6.1 Guessing+Induction

◆ @ ▶ ◆ 聖 ▶ ◆ 聖 ▶ 50/609

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$
$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$
$$\left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 1\right\rceil \le 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

6.1 Guessing+Induction

◆ @ ▶ ◆ 聖 ▶ ◆ 聖 ▶ 50/609

We also make a guess of $T(n) \le dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\boxed{\left\lceil \frac{n}{2} \right\rceil \leq \frac{n}{2} + 1} \leq 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\boxed{\frac{n}{2} + 1 \leq \frac{9}{16}n}$$

6.1 Guessing+Induction

◆ @ ▶ ◆ 聖 ▶ ◆ 聖 ▶ 50/609

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\boxed{\left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 1} \le 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\boxed{\frac{n}{2} + 1 \le \frac{9}{16}n} \le dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\boxed{\left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 1} \le 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\boxed{\left\lceil \frac{n}{2} + 1 \le \frac{9}{16}n\right\rceil} \le dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

 $\log \frac{9}{16}n = \log n + (\log 9 - 4)$

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$
$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$
$$\left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 1 \right\rceil \le 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$
$$\frac{n}{2} + 1 \le \frac{9}{16}n \right\rceil \le dn \log\left(\frac{9}{16}n\right) + 2d \log n + cn$$
$$\frac{9}{16}n = \log n + (\log 9 - 4) = dn \log n + (\log 9 - 4)dn + 2d \log n + cn$$

log

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2} + 1\right\rceil \leq 2\left(d(n/2+1)\log(n/2+1)\right) + cn$$

$$\left\lceil\frac{n}{2} + 1 \leq \frac{9}{16}n\right\rceil \leq dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$\left[\log\frac{9}{16}n = \log n + (\log 9 - 4)\right] = dn\log n + (\log 9 - 4)dn + 2d\log n + cn$$

$$\left[\log n \leq \frac{n}{4}\right]$$

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\left\lceil \frac{n}{2} \right\rceil \leq \frac{n}{2} + 1 \leq 2\left(d(n/2+1)\log(n/2+1)\right) + cn$$

$$\frac{n}{2} + 1 \leq \frac{9}{16}n \leq dn \log\left(\frac{9}{16}n\right) + 2d \log n + cn$$

$$\log \frac{9}{16}n = \log n + (\log 9 - 4) = dn \log n + (\log 9 - 4)dn + 2d \log n + cn$$

$$\log n \leq \frac{n}{4} \leq dn \log n + (\log 9 - 3.5)dn + cn$$

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2} + 1\right\rceil \leq 2(d(n/2+1)\log(n/2+1)) + cn$$

$$\frac{n}{2} + 1 \leq \frac{9}{16}n \leq dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$\log\frac{9}{16}n = \log n + (\log 9 - 4) = dn\log n + (\log 9 - 4)dn + 2d\log n + cn$$

$$\log n \leq \frac{n}{4} \leq dn\log n + (\log 9 - 3.5)dn + cn$$

$$\leq dn\log n - 0.33dn + cn$$

We also make a guess of $T(n) \leq dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2} + 1\right\rceil \leq 2\left(d(n/2+1)\log(n/2+1)\right) + cn$$

$$\frac{n}{2} + 1 \leq \frac{9}{16}n \leq dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$\log\frac{9}{16}n = \log n + (\log 9 - 4) = dn\log n + (\log 9 - 4)dn + 2d\log n + cn$$

$$\log n \leq \frac{n}{4} \leq dn\log n + (\log 9 - 3.5)dn + cn$$

$$\leq dn\log n - 0.33dn + cn$$

$$\leq dn\log n$$

for a suitable choice of d.

EADS © Ernst Mayr, Harald Räcke

6.2 Master Theorem

Lemma 1

Let $a \ge 1, b \ge 1$ and $\epsilon > 0$ denote constants. Consider the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + f(n) \; .$$

Case 1.

If
$$f(n) = O(n^{\log_b(a)-\epsilon})$$
 then $T(n) = O(n^{\log_b a})$.

Case 2.

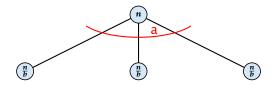
If $f(n) = \Theta(n^{\log_b(a)} \log^k n)$ then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$, $k \ge 0$.

Case 3.

If $f(n) = \Omega(n^{\log_b(a)+\epsilon})$ and for sufficiently large n $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 then $T(n) = \Theta(f(n))$. We prove the Master Theorem for the case that n is of the form b^{ℓ} , and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1.

The running time of a recursive algorithm can be visualized by a recursion tree:

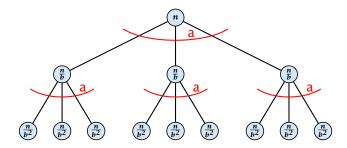
6.2 Master Theorem


The running time of a recursive algorithm can be visualized by a recursion tree:

n

6.2 Master Theorem

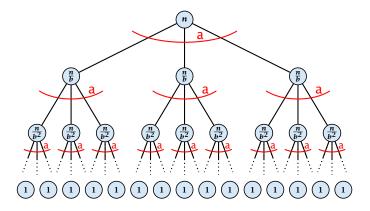
The running time of a recursive algorithm can be visualized by a recursion tree:



6.2 Master Theorem

◆ @ ▶ ◆ 臣 ▶ **◆** 臣 ▶ 53/609

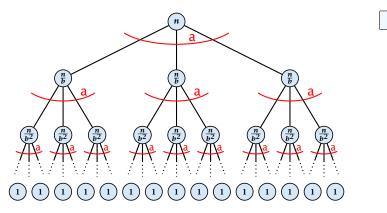
The running time of a recursive algorithm can be visualized by a recursion tree:



6.2 Master Theorem

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶
53/609

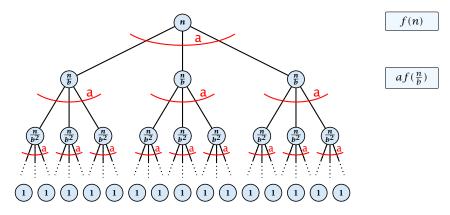
The running time of a recursive algorithm can be visualized by a recursion tree:



6.2 Master Theorem

◆ □ ▶ < □ ▶ < □ ▶</p>
53/609

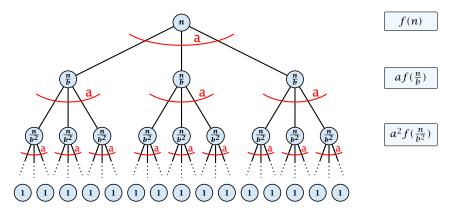
The running time of a recursive algorithm can be visualized by a recursion tree:


f(n)

6.2 Master Theorem

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 53/609

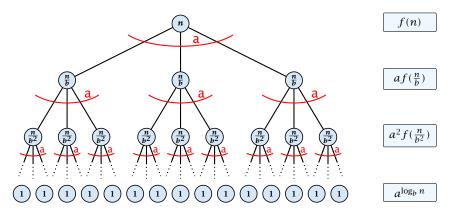
The running time of a recursive algorithm can be visualized by a recursion tree:



6.2 Master Theorem

◆ 個 ト < 臣 ト < 臣 ト 53/609

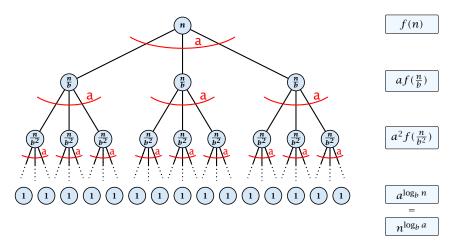
The running time of a recursive algorithm can be visualized by a recursion tree:



6.2 Master Theorem

◆ 個 ト < 臣 ト < 臣 ト 53/609

The running time of a recursive algorithm can be visualized by a recursion tree:



6.2 Master Theorem

◆ 個 ト < 臣 ト < 臣 ト 53/609

The running time of a recursive algorithm can be visualized by a recursion tree:

6.2 Master Theorem

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 53/609

6.2 Master Theorem

This gives

$$T(n) = n^{\log_b a} + \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right) .$$

6.2 Master Theorem

◆ □ → < ≥ → < ≥ → 54/609

6.2 Master Theorem

◆日 → < 三 → < 三 → 55/609

$$T(n) - n^{\log_b a}$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

6.2 Master Theorem

◆日 → < 三 → < 三 → 55/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$

 $b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$
$$\frac{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{\sum_{i=0}^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i}$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$
$$\overline{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}} = c n^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^\epsilon)^i$$
$$\overline{\sum_{i=0}^k q^i = \frac{q^{k+1}-1}{q-1}}$$

EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 55/609

EADS

© Ernst Mayr, Harald Räcke

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$
$$\frac{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{\sum_{i=0}^{k-1} c n^{\log_b a-\epsilon}} = c n^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i$$
$$\frac{\sum_{i=0}^k q^i = \frac{q^{k+1}-1}{q-1}}{\sum_{i=0}^k c n^{\log_b a-\epsilon} (b^{\epsilon \log_b n} - 1)/(b^{\epsilon} - 1)}$$

6.2 Master Theorem

EADS

© Ernst Mayr, Harald Räcke

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$
$$\frac{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{\sum_{i=0}^{k-1} c n^{\log_b a-\epsilon}} = c n^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i$$
$$\frac{\sum_{i=0}^k q^i = \frac{q^{k+1}-1}{q-1}}{\sum_{i=0}^k c n^{\log_b a-\epsilon} (b^{\epsilon}\log_b n-1)/(b^{\epsilon}-1)}$$
$$= c n^{\log_b a-\epsilon} (n^{\epsilon}-1)/(b^{\epsilon}-1)$$

◆ 個 ▶ < E ▶ < E ▶</p>

6.2 Master Theorem

EADS

© Ernst Mayr, Harald Räcke

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$

$$\frac{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{\sum_{i=0}^{k-1} e^{i(\log_b a-\epsilon)}} = c n^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i$$

$$\frac{\sum_{i=0}^k q^i = \frac{q^{k+1}-1}{q-1}}{e^{n-1}} = c n^{\log_b a-\epsilon} (b^{\epsilon \log_b n} - 1)/(b^{\epsilon} - 1)$$

$$= c n^{\log_b a-\epsilon} (n^{\epsilon} - 1)/(b^{\epsilon} - 1)$$

$$= \frac{c}{b^{\epsilon} - 1} n^{\log_b a} (n^{\epsilon} - 1)/(n^{\epsilon})$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$

$$\frac{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{\sum_{i=0}^{k-1}} = c n^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i$$

$$\frac{\sum_{i=0}^k q^i = \frac{q^{k+1}-1}{q-1}}{\sum_{i=0}^k (b^{\epsilon})^k (b^{\epsilon}-1)/(b^{\epsilon}-1)}$$

$$= c n^{\log_b a-\epsilon} (n^{\epsilon}-1)/(b^{\epsilon}-1)$$

$$= \frac{c}{b^{\epsilon}-1} n^{\log_b a} (n^{\epsilon}-1)/(n^{\epsilon})$$

Hence,

$$T(n) \leq \left(\frac{c}{b^{\epsilon}-1}+1\right) n^{\log_b(a)}$$

6.2 Master Theorem

▲ 個 ▶ < 2 > < 2 > 55/609

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a-\epsilon}$$

$$\overline{b^{-i(\log_{b} a-\epsilon)} = b^{\epsilon i}(b^{\log_{b} a})^{-i} = b^{\epsilon i}a^{-i}} = c n^{\log_{b} a-\epsilon} \sum_{i=0}^{\log_{b} n-1} (b^{\epsilon})^{i}$$

$$\overline{\sum_{i=0}^{k} q^{i} = \frac{q^{k+1}-1}{q-1}} = c n^{\log_{b} a-\epsilon} (b^{\epsilon} \log_{b} n - 1)/(b^{\epsilon} - 1)$$

$$= c n^{\log_{b} a-\epsilon} (n^{\epsilon} - 1)/(b^{\epsilon} - 1)$$

$$= \frac{c}{b^{\epsilon} - 1} n^{\log_{b} a} (n^{\epsilon} - 1)/(n^{\epsilon})$$

Hence,

$$T(n) \leq \left(\frac{c}{b^{\epsilon}-1}+1\right) n^{\log_b(a)} \qquad \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_b a}).$$

6.2 Master Theorem

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 55/609 Case 2. Now suppose that $f(n) \leq c n^{\log_b a}$.

6.2 Master Theorem

Case 2. Now suppose that $f(n) \leq c n^{\log_b a}$.

 $T(n) - n^{\log_b a}$

6.2 Master Theorem

▲ 個 ▶ < E ▶ < E ▶</p>
56/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

6.2 Master Theorem

◆ 週 ▶ 《 臣 ▶ 《 臣 ▶ 56/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \mathcal{O}(n^{\log_b a} \log_b n)$$

EADS © Ernst Mayr, Harald Räcke

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \mathcal{O}(n^{\log_b a} \log_b n) \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log n).$$

6.2 Master Theorem

◆ @ ▶ ◆ 聖 ▶ ◆ 聖 ▶ 56/609

6.2 Master Theorem

<日本 ● ● < 注 → < 注 → 57/609

 $T(n) - n^{\log_b a}$

6.2 Master Theorem

<日本 ● ● < 目 > < 目 > 57/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

6.2 Master Theorem

◆ □ → < ≥ → < ≥ → 57/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$

6.2 Master Theorem

◆ □ → < ≥ → < ≥ → 57/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \mathbf{\Omega}(n^{\log_b a} \log_b n)$$

EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem

◆ 週 ▶ ◆ 聖 ▶ ◆ 聖 ▶ 57/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \mathbf{\Omega}(n^{\log_b a} \log_b n) \qquad \Rightarrow T(n) = \mathbf{\Omega}(n^{\log_b a} \log n).$$

6.2 Master Theorem

◆ @ ▶ ◆ 聖 ▶ ◆ 聖 ▶ 57/609

6.2 Master Theorem

◆ 母 → ◆ 臣 → ◆ 臣 → 58/609

 $T(n) - n^{\log_b a}$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

6.2 Master Theorem

◆ 母 → ◆ 臣 → ◆ 臣 → 58/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$n=b^\ell \Rightarrow \ell = \log_b n$$

6.2 Master Theorem

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 58/609

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$
$$\boxed{n = b^\ell \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell-1} \left(\log_b \left(\frac{b^\ell}{b^i}\right)\right)^k$$

6.2 Master Theorem

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$
$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a} \cdot \left(\log_{b} \left(\frac{n}{b^{i}}\right)\right)^{k}$$
$$\boxed{n = b^{\ell} \Rightarrow \ell = \log_{b} n} = c n^{\log_{b} a} \sum_{i=0}^{\ell-1} \left(\log_{b} \left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}$$
$$= c n^{\log_{b} a} \sum_{i=0}^{\ell-1} (\ell - i)^{k}$$

EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a} \cdot \left(\log_{b} \left(\frac{n}{b^{i}}\right)\right)^{k}$$

$$\overline{n = b^{\ell} \Rightarrow \ell = \log_{b} n} = c n^{\log_{b} a} \sum_{i=0}^{\ell-1} \left(\log_{b} \left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=0}^{\ell-1} (\ell - i)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=1}^{\ell} i^{k}$$

EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a} \cdot \left(\log_{b} \left(\frac{n}{b^{i}}\right)\right)^{k}$$

$$\overline{n = b^{\ell} \Rightarrow \ell = \log_{b} n} = c n^{\log_{b} a} \sum_{i=0}^{\ell-1} \left(\log_{b} \left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=0}^{\ell-1} (\ell - i)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=1}^{\ell} i^{k} \approx \frac{1}{k} \ell^{k+1}$$

EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a} \cdot \left(\log_{b} \left(\frac{n}{b^{i}}\right)\right)^{k}$$

$$\overline{n = b^{\ell} \Rightarrow \ell = \log_{b} n} = c n^{\log_{b} a} \sum_{i=0}^{\ell-1} \left(\log_{b} \left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=0}^{\ell-1} (\ell - i)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=1}^{\ell} i^{k}$$

$$\approx \frac{c}{k} n^{\log_{b} a} \ell^{k+1}$$

6.2 Master Theorem

▲ @ ▶ ▲ ≧ ▶ ▲ ≧ ▶ 58/609

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a} \cdot \left(\log_{b}\left(\frac{n}{b^{i}}\right)\right)^{k}$$

$$\overline{n = b^{\ell} \Rightarrow \ell = \log_{b} n} = c n^{\log_{b} a} \sum_{i=0}^{\ell-1} \left(\log_{b}\left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=0}^{\ell-1} (\ell - i)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=1}^{\ell} i^{k}$$

$$\approx \frac{c}{k} n^{\log_{b} a} \ell^{k+1} \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_{b} a} \log^{k+1} n).$$

6.2 Master Theorem

▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶ 58/609

6.2 Master Theorem

◆ 母 → ◆ 臣 → ◆ 臣 → 59/609

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq \sum_{i=0}^{\log_b n-1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq \sum_{i=0}^{\log_b n-1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

$$q < 1: \sum_{i=0}^{n} q^i = \frac{1-q^{n+1}}{1-q} \le \frac{1}{1-q}$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$
$$\leq \sum_{i=0}^{\log_{b} n-1} c^{i} f(n) + \mathcal{O}(n^{\log_{b} a})$$
$$\boxed{q < 1 : \sum_{i=0}^{n} q^{i} = \frac{1-q^{n+1}}{1-q} \le \frac{1}{1-q}} \leq \frac{1}{1-c} f(n) + \mathcal{O}(n^{\log_{b} a})$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq \sum_{i=0}^{\log_b n-1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

$$\underline{q < 1: \sum_{i=0}^n q^i = \frac{1-q^{n+1}}{1-q} \le \frac{1}{1-q}} \leq \frac{1}{1-c} f(n) + \mathcal{O}(n^{\log_b a})$$

Hence,

 $T(n) \leq \mathcal{O}(f(n))$

EADS			
© Ernst	Mayr,	Harald	Räcke

6.2 Master Theorem

◆ 個 ト < 注 ト < 注 ト 59/609

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$
$$\leq \sum_{i=0}^{\log_{b} n-1} c^{i} f(n) + \mathcal{O}(n^{\log_{b} a})$$
$$< 1 : \sum_{i=0}^{n} q^{i} = \frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q} \le \frac{1}{1-c} f(n) + \mathcal{O}(n^{\log_{b} a})$$

Hence,

q

$$T(n) \leq \mathcal{O}(f(n))$$
 $\Rightarrow T(n) = \Theta(f(n)).$

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

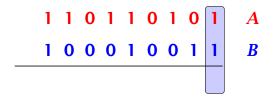
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

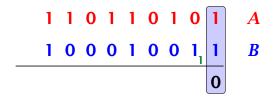
Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.


For this we first need to be able to add two integers **A** and **B**:

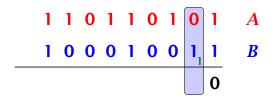
1 1 0 1 0 1 0 1 A 1 0 0 0 1 0 0 1 1 B

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.


For this we first need to be able to add two integers **A** and **B**:

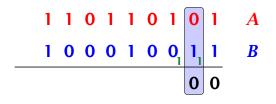
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:



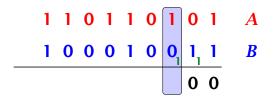
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:



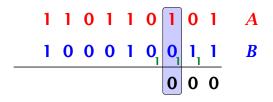
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:



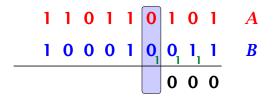
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:



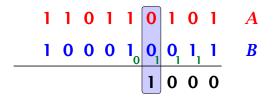
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:



Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:



Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

6.2 Master Theorem

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

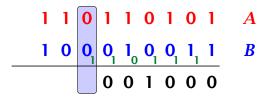
For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:


Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

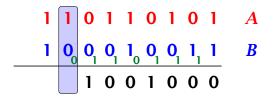
For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

6.2 Master Theorem

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

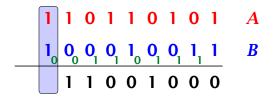

For this we first need to be able to add two integers **A** and **B**:

6.2 Master Theorem

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

6.2 Master Theorem

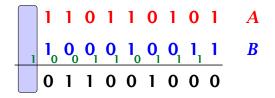

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

6.2 Master Theorem


Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

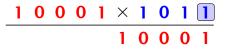
This gives that two *n*-bit integers can be added in time O(n).

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

6.2 Master Theorem

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

 $1 \ 0 \ 0 \ 0 \ 1 \times 1 \ 0 \ 1 \ 1$

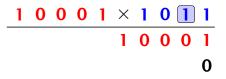


Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1 0 0 0 1 × 1 0 1 1

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

6.2 Master Theorem


◆ @ ▶ ◆ 臺 ▶ ◆ 臺 ▶ 61/609

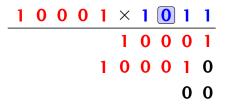
Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

6.2 Master Theorem

◆ @ ▶ ◆ 臺 ▶ ◆ 臺 ▶ 61/609

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).


Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

6.2 Master Theorem

◆ @ ▶ ◆ 臺 ▶ ◆ 臺 ▶ 61/609

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

6.2 Master Theorem

_

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	X	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0

6.2 Master Theorem

_

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	X	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0

6.2 Master Theorem

_

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	X	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
							0	0	0

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0

6.2 Master Theorem

◆ 圖 ▶ < 置 ▶ < 置 ▶ 61/609

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0
		1	0	1	1	1	0	1	1

6.2 Master Theorem

◆ 圖 ▶ < 置 ▶ < 置 ▶ 61/609

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0
		1	0	1	1	1	0	1	1

Time requirement:

6.2 Master Theorem

◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ 61/609

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0
		1	0	1	1	1	0	1	1

Time requirement:

• Computing intermediate results: O(nm).

5000	EADS © Ernst Mayr		
	© Ernst Mayr	, Harald	Räcke

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0
		1	0	1	1	1	0	1	1

Time requirement:

- Computing intermediate results: O(nm).
- Adding *m* numbers of length $\leq 2n$:

 $\mathcal{O}((m+n)m) = \mathcal{O}(nm).$

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

$$b_n \cdots b_{\frac{n}{2}} b_{\frac{n}{2}-1} \cdots b_0 \times a_n \cdots a_{\frac{n}{2}} a_{\frac{n}{2}-1} \cdots a_0$$

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

$$\begin{array}{|c|c|c|c|c|c|} B_1 & B_0 & \times & A_1 & A_0 \\ \hline \end{array}$$

Then it holds that

$$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$
 and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

$$\begin{array}{|c|c|c|c|c|c|} B_1 & B_0 & \times & A_1 & A_0 \\ \hline \end{array}$$

Then it holds that

$$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$
 and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$

Hence,

$$A \cdot B = A_1 B_1 \cdot 2^n + (A_1 B_0 + A_0 B_1) \cdot 2^{\frac{n}{2}} + A_0 \cdot B_0$$

החוחר	EADS © Ernst Mayr, Harald Räcke
	© Ernst Mayr, Harald Räcke

6.2 Master Theorem

▲ @ ▶ ▲ 臺 ▶ ▲ 臺 ▶ 62/609

 Algorithm 3 mult(A, B)

 1: if |A| = |B| = 1 then

 2: return $a_0 \cdot b_0$

 3: split A into A_0 and A_1

 4: split B into B_0 and B_1

 5: $Z_2 \leftarrow mult(A_1, B_1)$

 6: $Z_1 \leftarrow mult(A_1, B_0) + mult(A_0, B_1)$

 7: $Z_0 \leftarrow mult(A_0, B_0)$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 Algorithm 3 mult(A, B)

 1: if |A| = |B| = 1 then

 2: return $a_0 \cdot b_0$

 3: split A into A_0 and A_1

 4: split B into B_0 and B_1

 5: $Z_2 \leftarrow mult(A_1, B_1)$

 6: $Z_1 \leftarrow mult(A_1, B_0) + mult(A_0, B_1)$

 7: $Z_0 \leftarrow mult(A_0, B_0)$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 Algorithm 3 mult(A, B)

 1: if |A| = |B| = 1 then

 2: return $a_0 \cdot b_0$

 3: split A into A_0 and A_1

 4: split B into B_0 and B_1

 5: $Z_2 \leftarrow mult(A_1, B_1)$

 6: $Z_1 \leftarrow mult(A_1, B_0) + mult(A_0, B_1)$

 7: $Z_0 \leftarrow mult(A_0, B_0)$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem

◆ 個 ト < 臣 ト < 臣 ト 63/609

 Algorithm 3 mult(A, B)

 1: if |A| = |B| = 1 then

 2: return $a_0 \cdot b_0$

 3: split A into A_0 and A_1

 4: split B into B_0 and B_1

 5: $Z_2 \leftarrow mult(A_1, B_1)$

 6: $Z_1 \leftarrow mult(A_1, B_0) + mult(A_0, B_1)$

 7: $Z_0 \leftarrow mult(A_0, B_0)$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

EADS © Ernst Mayr, Harald Räcke 6.2 Master Theorem

◆ ■ ト < 三 ト < 三 ト 63/609

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

 Algorithm 3 mult(A, B)

 1: if |A| = |B| = 1 then

 2: return $a_0 \cdot b_0$

 3: split A into A_0 and A_1

 4: split B into B_0 and B_1

 5: $Z_2 \leftarrow mult(A_1, B_1)$

 6: $Z_1 \leftarrow mult(A_1, B_0) + mult(A_0, B_1)$

 7: $Z_0 \leftarrow mult(A_0, B_0)$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

6.2 Master Theorem

◆ 個 ト < 置 ト < 置 ト 63/609

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + O(n)$
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

6.2 Master Theorem

◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 63/609

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + O(n)$
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split B into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + \mathcal{O}(n)$
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$\mathcal{O}(n)$

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split B into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + \mathcal{O}(n)$
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$\mathcal{O}(n)$

We get the following recurrence:

$$T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n) \ .$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

• Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$
 $T(n) = O(n^{\log_b a})$

• Case 2:
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$
 $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 $T(n) = \Theta(f(n))$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

• Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$
 $T(n) = \Theta(n^{\log_b a})$

• Case 2:
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$
 $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 $T(n) = \Theta(f(n))$

In our case a = 4, b = 2, and $f(n) = \Theta(n)$. Hence, we are in Case 1, since $n = O(n^{2-\epsilon}) = O(n^{\log_b a - \epsilon})$.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

• Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$
 $T(n) = \Theta(n^{\log_b a})$

• Case 2:
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$
 $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a = 4, b = 2, and $f(n) = \Theta(n)$. Hence, we are in Case 1, since $n = O(n^{2-\epsilon}) = O(n^{\log_b a - \epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

• Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$
 $T(n) = \Theta(n^{\log_b a})$

• Case 2:
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$
 $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a = 4, b = 2, and $f(n) = \Theta(n)$. Hence, we are in Case 1, since $n = O(n^{2-\epsilon}) = O(n^{\log_b a - \epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

⇒ Not better then the "school method".

We can use the following identity to compute Z_1 :

We can use the following identity to compute Z_1 :

 $Z_1 = A_1 B_0 + A_0 B_1$

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1$$

= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

6.2 Master Theorem

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 65/609

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

6.2 Master Theorem

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 65/609

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

Algorithm 4 mult(A, B) 1: if |A| = |B| = 1 then 2: return $a_0 \cdot b_0$ 3: split A into A_0 and A_1 4: split B into B_0 and B_1 5: $Z_2 \leftarrow mult(A_1, B_1)$ 6: $Z_0 \leftarrow mult(A_0, B_0)$ 7: $Z_1 \leftarrow mult(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

 Algorithm 4 mult(A, B)
 0

 1: if |A| = |B| = 1 then
 0

 2: return $a_0 \cdot b_0$

 3: split A into A_0 and A_1

 4: split B into B_0 and B_1

 5: $Z_2 \leftarrow mult(A_1, B_1)$

 6: $Z_0 \leftarrow mult(A_0, B_0)$

 7: $Z_1 \leftarrow mult(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

EADS © Ernst Mayr, Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

 Algorithm 4 mult(A, B)
 0

 1: if |A| = |B| = 1 then
 0

 2: return $a_0 \cdot b_0$ 0

 3: split A into A_0 and A_1 0

 4: split B into B_0 and B_1 0

 5: $Z_2 \leftarrow mult(A_1, B_1)$ 0

 6: $Z_0 \leftarrow mult(A_0, B_0)$ $Z_1 \leftarrow mult(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

EADS © Ernst Mayr, Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

 Algorithm 4 mult(A, B)
 0

 1: if |A| = |B| = 1 then
 0

 2: return $a_0 \cdot b_0$ 0

 3: split A into A_0 and A_1 0

 4: split B into B_0 and B_1 0

 5: $Z_2 \leftarrow mult(A_1, B_1)$ 0

 6: $Z_0 \leftarrow mult(A_0, B_0)$ 7: $Z_1 \leftarrow mult(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

EADS © Ernst Mayr, Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

Algorithm 4 mult(A, B)0(1)1: if |A| = |B| = 1 then0(1)2: return $a_0 \cdot b_0$ 0(1)3: split A into A_0 and A_1 0(n)4: split B into B_0 and B_1 0(n)5: $Z_2 \leftarrow mult(A_1, B_1)$ 0(n)6: $Z_0 \leftarrow mult(A_0, B_0)$ $7: Z_1 \leftarrow mult(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

EADS © Ernst Mayr, Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

Algorithm 4 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	
7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

EADS © Ernst Mayr, Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

Algorithm 4 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

EADS © Ernst Mayr, Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

Algorithm 4 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	$T(\frac{n}{2}) + O(n)$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,

Algorithm 4 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	$T(\frac{n}{2}) + \mathcal{O}(n)$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$\mathcal{O}(n)$

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n)$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) pprox \Theta(n^{1.59}).$

A huge improvement over the "school method".

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n)$$
.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) pprox \Theta(n^{1.59}).$

A huge improvement over the "school method".

6.2 Master Theorem

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n)$$
.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.

A huge improvement over the "school method".

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n)$$
.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.

A huge improvement over the "school method".

Consider the recurrence relation:

 $c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_0, c_k \neq 0$).

- T(n) only depends on the k preceding values. This means the recurrence relation is of *solids k*.
- The recurrence is linear as there are no products of T[n]'s.
- If f(n) = 0 then the recurrence relation becomes a linear, recurrence relation of order k.

Consider the recurrence relation:

 $c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_0, c_k \neq 0$).

- T(n) only depends on the k preceding values. This means the recurrence relation is of order k.
- The recurrence is linear as there are no products of T[n]'s.
- ▶ If f(n) = 0 then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

Consider the recurrence relation:

 $c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_0, c_k \neq 0$).

- T(n) only depends on the k preceding values. This means the recurrence relation is of order k.
- The recurrence is linear as there are no products of T[n]'s.
- If f(n) = 0 then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

Consider the recurrence relation:

 $c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_0, c_k \neq 0$).

- T(n) only depends on the k preceding values. This means the recurrence relation is of order k.
- ► The recurrence is linear as there are no products of *T*[*n*]'s.
- If f(n) = 0 then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

Consider the recurrence relation:

 $c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_0, c_k \neq 0$).

- T(n) only depends on the k preceding values. This means the recurrence relation is of order k.
- ► The recurrence is linear as there are no products of *T*[*n*]'s.
- If f(n) = 0 then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

Consider the recurrence relation:

 $c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_0, c_k \neq 0$).

- T(n) only depends on the k preceding values. This means the recurrence relation is of order k.
- ► The recurrence is linear as there are no products of *T*[*n*]'s.
- If f(n) = 0 then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

Observations:

- The solution T[1], T[2], T[3],... is completely determined by a set of boundary conditions that specify values for T[1],..., T[k].
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

Observations:

- ► The solution T[1], T[2], T[3],... is completely determined by a set of boundary conditions that specify values for T[1],...,T[k].
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

Observations:

- ► The solution T[1], T[2], T[3],... is completely determined by a set of boundary conditions that specify values for T[1],...,T[k].
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

Observations:

- ► The solution T[1], T[2], T[3],... is completely determined by a set of boundary conditions that specify values for T[1],...,T[k].
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

Observations:

- ► The solution T[1], T[2], T[3],... is completely determined by a set of boundary conditions that specify values for T[1],...,T[k].
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

Observations:

- ► The solution T[1], T[2], T[3],... is completely determined by a set of boundary conditions that specify values for T[1],...,T[k].
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

Observations:

- ► The solution T[1], T[2], T[3],... is completely determined by a set of boundary conditions that specify values for T[1],...,T[k].
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.

First consider the homogenous case.

Observations:

- ► The solution T[1], T[2], T[3],... is completely determined by a set of boundary conditions that specify values for T[1],...,T[k].
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

The solution space

$$S = \left\{ \mathcal{T} = T[1], T[2], T[3], \dots \mid \mathcal{T} \text{ fulfills recurrence relation} \right\}$$

is a vector space. This means that if $\mathcal{T}_1, \mathcal{T}_2 \in S$, then also $\alpha \mathcal{T}_1 + \beta \mathcal{T}_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \dots + c_k \cdot \lambda^{n-k} = 0$$

for all $n \ge k$.

EADS 6.3 The C © Ernst Mavr. Harald Räcke

6.3 The Characteristic Polynomial

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 69/609

The solution space

 $S = \left\{ \mathcal{T} = T[1], T[2], T[3], \dots \mid \mathcal{T} \text{ fulfills recurrence relation} \right\}$

is a vector space. This means that if $\mathcal{T}_1, \mathcal{T}_2 \in S$, then also $\alpha \mathcal{T}_1 + \beta \mathcal{T}_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \dots + c_k \cdot \lambda^{n-k} = 0$$

for all $n \ge k$.

EADS © Ernst Mayr, Harald Räcke 6.3 The Characteristic Polynomial

The solution space

$$S = \left\{ \mathcal{T} = T[1], T[2], T[3], \dots \mid \mathcal{T} \text{ fulfills recurrence relation} \right\}$$

is a vector space. This means that if $\mathcal{T}_1, \mathcal{T}_2 \in S$, then also $\alpha \mathcal{T}_1 + \beta \mathcal{T}_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \dots + c_k \cdot \lambda^{n-k} = 0$$

for all $n \ge k$.

The solution space

 $S = \left\{ \mathcal{T} = T[1], T[2], T[3], \dots \mid \mathcal{T} \text{ fulfills recurrence relation} \right\}$

is a vector space. This means that if $\mathcal{T}_1, \mathcal{T}_2 \in S$, then also $\alpha \mathcal{T}_1 + \beta \mathcal{T}_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

 $c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \dots + c_k \cdot \lambda^{n-k} = 0$

for all $n \ge k$.

6.3 The Characteristic Polynomial

The solution space

$$S = \left\{ \mathcal{T} = T[1], T[2], T[3], \dots \mid \mathcal{T} \text{ fulfills recurrence relation} \right\}$$

is a vector space. This means that if $\mathcal{T}_1, \mathcal{T}_2 \in S$, then also $\alpha \mathcal{T}_1 + \beta \mathcal{T}_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \dots + c_k \cdot \lambda^{n-k} = 0$$

for all $n \ge k$.

© Ernst Mavr. Harald Räcke

FADS

▲ 御 ト ▲ ヨ ト ▲ ヨ)

Dividing by λ^{n-k} gives that all these constraints are identical to

$$c_0\lambda^k + c_1\lambda^{k-1} + c_2\cdot\lambda^{k-2} + \cdots + c_k = 0$$

This means that if λ_i is a root (Nullstelle) of $P[\lambda]$ then $T[n] = \lambda_i^n$ is a solution to the recurrence relation.

Let $\lambda_1, \ldots, \lambda_k$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$

is a solution for arbitrary values α_i .

6.3 The Characteristic Polynomial

◆ 個 ト ◆ 聖 ト ◆ 聖 ト 70/609

Dividing by λ^{n-k} gives that all these constraints are identical to

$$\underbrace{c_0 \lambda^k + c_1 \lambda^{k-1} + c_2 \cdot \lambda^{k-2} + \dots + c_k}_{\text{characteristic polynomial } P[\lambda]} = 0$$

This means that if λ_i is a root (Nullstelle) of $P[\lambda]$ then $T[n] = \lambda_i^n$ is a solution to the recurrence relation.

Let $\lambda_1, \ldots, \lambda_k$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$

is a solution for arbitrary values α_i .

6.3 The Characteristic Polynomial

▲ 個 ト ▲ 臣 ト ▲ 臣 ト 70/609

Dividing by λ^{n-k} gives that all these constraints are identical to

$$\underbrace{c_0 \lambda^k + c_1 \lambda^{k-1} + c_2 \cdot \lambda^{k-2} + \dots + c_k}_{\text{characteristic polynomial } P[\lambda]} = 0$$

This means that if λ_i is a root (Nullstelle) of $P[\lambda]$ then $T[n] = \lambda_i^n$ is a solution to the recurrence relation.

Let $\lambda_1, \ldots, \lambda_k$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$

is a solution for arbitrary values α_i .

6.3 The Characteristic Polynomial

◆ ■ ト < 置 ト < 置 ト 70/609

Dividing by λ^{n-k} gives that all these constraints are identical to

$$\underbrace{c_0 \lambda^k + c_1 \lambda^{k-1} + c_2 \cdot \lambda^{k-2} + \dots + c_k}_{\text{characteristic polynomial } P[\lambda]} = 0$$

This means that if λ_i is a root (Nullstelle) of $P[\lambda]$ then $T[n] = \lambda_i^n$ is a solution to the recurrence relation.

Let $\lambda_1, ..., \lambda_k$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$

is a solution for arbitrary values α_i .

Lemma 2

Assume that the characteristic polynomial has k distinct roots $\lambda_1, \ldots, \lambda_k$. Then all solutions to the recurrence relation are of the form

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$
.

Proof.

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

We show that the above set of solutions contains one solution for every choice of boundary conditions.

Lemma 2

Assume that the characteristic polynomial has k distinct roots $\lambda_1, \ldots, \lambda_k$. Then all solutions to the recurrence relation are of the form

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$
.

Proof.

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

We show that the above set of solutions contains one solution for every choice of boundary conditions.

Lemma 2

Assume that the characteristic polynomial has k distinct roots $\lambda_1, \ldots, \lambda_k$. Then all solutions to the recurrence relation are of the form

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$
.

Proof.

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

We show that the above set of solutions contains one solution for every choice of boundary conditions.

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

6.3 The Characteristic Polynomial

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

 $\alpha_1 \cdot \lambda_1 + \alpha_2 \cdot \lambda_2 + \cdots + \alpha_k \cdot \lambda_k = T[1]$

6.3 The Characteristic Polynomial

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

$$\alpha_1 \cdot \lambda_1 + \alpha_2 \cdot \lambda_2 + \cdots + \alpha_k \cdot \lambda_k = T[1]$$

$$\alpha_1 \cdot \lambda_1^2 + \alpha_2 \cdot \lambda_2^2 + \cdots + \alpha_k \cdot \lambda_k^2 = T[2]$$

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

$$\alpha_1 \cdot \lambda_1 + \alpha_2 \cdot \lambda_2 + \cdots + \alpha_k \cdot \lambda_k = T[1] \alpha_1 \cdot \lambda_1^2 + \alpha_2 \cdot \lambda_2^2 + \cdots + \alpha_k \cdot \lambda_k^2 = T[2] \vdots$$

6.3 The Characteristic Polynomial

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

$$\begin{array}{rcl} \alpha_{1} \cdot \lambda_{1} & + & \alpha_{2} \cdot \lambda_{2} & + & \cdots & + & \alpha_{k} \cdot \lambda_{k} & = & T[1] \\ \alpha_{1} \cdot \lambda_{1}^{2} & + & \alpha_{2} \cdot \lambda_{2}^{2} & + & \cdots & + & \alpha_{k} \cdot \lambda_{k}^{2} & = & T[2] \\ & & & \vdots \\ \alpha_{1} \cdot \lambda_{1}^{k} & + & \alpha_{2} \cdot \lambda_{2}^{k} & + & \cdots & + & \alpha_{k} \cdot \lambda_{k}^{k} & = & T[k] \end{array}$$

6.3 The Characteristic Polynomial

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

$$\begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_k^2 \\ & \vdots & & \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_k^k \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{pmatrix} = \begin{pmatrix} T[1] \\ T[2] \\ \vdots \\ T[k] \end{pmatrix}$$

6.3 The Characteristic Polynomial

◆ @ ▶ ◆ 置 ▶ ◆ 置 ▶ 73/609

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

$$\begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_k^2 \\ & \vdots & & \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_k^k \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{pmatrix} = \begin{pmatrix} T[1] \\ T[2] \\ \vdots \\ T[k] \end{pmatrix}$$

We show that the column vectors are linearly independent. Then the above equation has a solution.

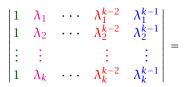
$$\begin{vmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_{k-1}^2 & \lambda_k^2 \\ \vdots & \vdots & & \vdots & \vdots \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_{k-1}^k & \lambda_k^k \end{vmatrix} =$$

6.3 The Characteristic Polynomial

◆ ■ ▶ < ■ ▶
 ▼ ₹ ₹ ₹
 74/609

$$\begin{vmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_{k-1}^2 & \lambda_k^2 \\ \vdots & \vdots & & \vdots & \vdots \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_{k-1}^k & \lambda_k^k \end{vmatrix} = \prod_{i=1}^k \lambda_i \cdot \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\ \vdots & \vdots & & \vdots & \vdots \\ \lambda_1^{k-1} & \lambda_2^{k-1} & \cdots & \lambda_{k-1}^{k-1} & \lambda_k^{k-1} \end{vmatrix}$$

6.3 The Characteristic Polynomial


◆ □ > < □ > < □ >
 74/609

$$\begin{vmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_{k-1}^2 & \lambda_k^2 \\ \vdots & \vdots & & \vdots & \vdots \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_{k-1}^k & \lambda_k^k \end{vmatrix} = \prod_{i=1}^k \lambda_i \cdot \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\ \vdots & \vdots & & \vdots & \vdots \\ \lambda_1^{k-1} & \lambda_2^{k-1} & \cdots & \lambda_{k-1}^{k-1} & \lambda_k^{k-1} \end{vmatrix}$$

$$=\prod_{i=1}^{k} \lambda_i \cdot \begin{vmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{k-2} & \lambda_1^{k-1} \\ 1 & \lambda_2 & \cdots & \lambda_2^{k-2} & \lambda_2^{k-1} \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & \lambda_k & \cdots & \lambda_k^{k-2} & \lambda_k^{k-1} \end{vmatrix}$$

EADS © Ernst Mayr, Harald Räcke 6.3 The Characteristic Polynomial

◆聞▶◆聖▶◆聖▶ 74/609

6.3 The Characteristic Polynomial

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 75/609

EADS

© Ernst Mayr, Harald Räcke

$$\begin{vmatrix} 1 & \lambda_{1} & \cdots & \lambda_{1}^{k-2} & \lambda_{1}^{k-1} \\ 1 & \lambda_{2} & \cdots & \lambda_{2}^{k-2} & \lambda_{2}^{k-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda_{k} & \cdots & \lambda_{k}^{k-2} & \lambda_{k}^{k-1} \end{vmatrix} = \\ \begin{vmatrix} 1 & \lambda_{1} - \lambda_{1} \cdot 1 & \cdots & \lambda_{1}^{k-2} - \lambda_{1} \cdot \lambda_{1}^{k-3} & \lambda_{1}^{k-1} - \lambda_{1} \cdot \lambda_{1}^{k-2} \\ 1 & \lambda_{2} - \lambda_{1} \cdot 1 & \cdots & \lambda_{2}^{k-2} - \lambda_{1} \cdot \lambda_{2}^{k-3} & \lambda_{2}^{k-1} - \lambda_{1} \cdot \lambda_{2}^{k-2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda_{k} - \lambda_{1} \cdot 1 & \cdots & \lambda_{k}^{k-2} - \lambda_{1} \cdot \lambda_{k}^{k-3} & \lambda_{k}^{k-1} - \lambda_{1} \cdot \lambda_{k}^{k-2} \end{vmatrix}$$

6.3 The Characteristic Polynomial

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 75/609

$$\begin{vmatrix} 1 & \lambda_1 - \lambda_1 \cdot 1 & \cdots & \lambda_1^{k-2} - \lambda_1 \cdot \lambda_1^{k-3} & \lambda_1^{k-1} - \lambda_1 \cdot \lambda_1^{k-2} \\ 1 & \lambda_2 - \lambda_1 \cdot 1 & \cdots & \lambda_2^{k-2} - \lambda_1 \cdot \lambda_2^{k-3} & \lambda_2^{k-1} - \lambda_1 \cdot \lambda_2^{k-2} \\ \vdots & \vdots & & \vdots \\ 1 & \lambda_k - \lambda_1 \cdot 1 & \cdots & \lambda_k^{k-2} - \lambda_1 \cdot \lambda_k^{k-3} & \lambda_k^{k-1} - \lambda_1 \cdot \lambda_k^{k-2} \end{vmatrix} =$$

6.3 The Characteristic Polynomial

▲ 個 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 76/609

EADS

© Ernst Mayr, Harald Räcke

6.3 The Characteristic Polynomial

$$\begin{vmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & (\lambda_2 - \lambda_1) \cdot 1 & \cdots & (\lambda_2 - \lambda_1) \cdot \lambda_2^{k-3} & (\lambda_2 - \lambda_1) \cdot \lambda_2^{k-2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & (\lambda_k - \lambda_1) \cdot 1 & \cdots & (\lambda_k - \lambda_1) \cdot \lambda_k^{k-3} & (\lambda_k - \lambda_1) \cdot \lambda_k^{k-2} \end{vmatrix} =$$

6.3 The Characteristic Polynomial

◆ 週 → ◆ 臣 → ◆ 臣 → 77/609

$$\begin{vmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & (\lambda_2 - \lambda_1) \cdot 1 & \cdots & (\lambda_2 - \lambda_1) \cdot \lambda_2^{k-3} & (\lambda_2 - \lambda_1) \cdot \lambda_2^{k-2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & (\lambda_k - \lambda_1) \cdot 1 & \cdots & (\lambda_k - \lambda_1) \cdot \lambda_k^{k-3} & (\lambda_k - \lambda_1) \cdot \lambda_k^{k-2} \end{vmatrix} = \\ \begin{bmatrix} k \\ \prod_{i=2}^k (\lambda_i - \lambda_1) \cdot \\ \vdots & \vdots & \vdots \\ 1 & \lambda_k & \cdots & \lambda_k^{k-3} & \lambda_k^{k-2} \\ \end{bmatrix}$$

6.3 The Characteristic Polynomial

◆週 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 77/609

Repeating the above steps gives:

$$\begin{vmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_{k-1}^2 & \lambda_k^2 \\ \vdots & \vdots & & \vdots & \vdots \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_{k-1}^k & \lambda_k^k \end{vmatrix} = \prod_{i=1}^k \lambda_i \cdot \prod_{i>\ell} (\lambda_i - \lambda_\ell)$$

Hence, if all λ_i 's are different, then the determinant is non-zero.

6.3 The Characteristic Polynomial

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$. To see this consider the polynomial

 $P[\lambda] \cdot \lambda^{n-k} = c_0 \lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \dots + c_k \lambda^{n-k}$

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$.

To see this consider the polynomial

 $P[\lambda] \cdot \lambda^{n-k} = c_0 \lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \dots + c_k \lambda^{n-k}$

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$. To see this consider the polynomial

$$P[\lambda] \cdot \lambda^{n-k} = c_0 \lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \dots + c_k \lambda^{n-k}$$

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$. To see this consider the polynomial

$$P[\lambda] \cdot \lambda^{n-k} = c_0 \lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \dots + c_k \lambda^{n-k}$$

This means

$$c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \dots + c_k (n-k) \lambda_i^{n-k-1} = 0$$

Hence,

$$c_{0}\underbrace{n\lambda_{i}^{n}}_{T[n]} + c_{1}\underbrace{(n-1)\lambda_{i}^{n-1}}_{T[n-1]} + \dots + c_{k}\underbrace{(n-k)\lambda_{i}^{n-k}}_{T[n-k]} = 0$$

6.3 The Characteristic Polynomial

◆ 週 → ∢ 臣 → ∢ 臣 → 80/609

This means

$$c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \dots + c_k (n-k) \lambda_i^{n-k-1} = 0$$

Hence,

$$c_0 n\lambda_i^n + c_1 (n-1)\lambda_i^{n-1} + \dots + c_k (n-k)\lambda_i^{n-k} = 0$$

6.3 The Characteristic Polynomial

◆ 週 → ∢ 臣 → ∢ 臣 → 80/609

This means

$$c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \dots + c_k (n-k) \lambda_i^{n-k-1} = 0$$

Hence,

$$c_0 \underbrace{n\lambda_i^n}_{T[n]} + c_1 \underbrace{(n-1)\lambda_i^{n-1}}_{T[n-1]} + \cdots + c_k \underbrace{(n-k)\lambda_i^{n-k}}_{T[n-k]} = 0$$

6.3 The Characteristic Polynomial

● 週 → 《 臣 → 《 臣 → 80/609

Suppose λ_i has multiplicity *j*. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

$$c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \dots + c_k (n-k)^2 \lambda_i^{n-k} = 0$$

We can continue j - 1 times.

Hence, $n^{\ell}\lambda_i^n$ is a solution for $\ell \in 0, \ldots, j-1$.

EADS © Ernst Mayr, Harald Räcke 6.3 The Characteristic Polynomial

◆ @ ▶ ◆ 臺 ▶ **◆** 臺 ▶ 81/609

Suppose λ_i has multiplicity *j*. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives $c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \cdots + c_k (n-k)^2 \lambda_i^{n-k} = 0$ We can continue j-1 times.

Hence, $n^{\ell}\lambda_i^n$ is a solution for $\ell \in 0, ..., j-1$.

EADS © Ernst Mayr, Harald Räcke 6.3 The Characteristic Polynomial

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 81/609

Suppose λ_i has multiplicity *j*. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

$$c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \dots + c_k (n-k)^2 \lambda_i^{n-k} = 0$$

We can continue j - 1 times.

Hence, $n^{\ell}\lambda_i^n$ is a solution for $\ell \in 0, ..., j-1$.

EADS © Ernst Mayr, Harald Räcke 6.3 The Characteristic Polynomial

◆ @ ▶ ◆ 臺 ▶ **◆** 臺 ▶ 81/609

Suppose λ_i has multiplicity *j*. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

$$c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \dots + c_k (n-k)^2 \lambda_i^{n-k} = 0$$

We can continue j - 1 times.

Hence, $n^\ell \lambda_i^n$ is a solution for $\ell \in 0, \dots, j-1$.

Suppose λ_i has multiplicity *j*. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

$$c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \dots + c_k (n-k)^2 \lambda_i^{n-k} = 0$$

We can continue j - 1 times.

Hence, $n^{\ell} \lambda_i^n$ is a solution for $\ell \in 0, ..., j-1$.

EADS © Ernst Mayr, Harald Räcke

Lemma 3

Let $P[\lambda]$ denote the characteristic polynomial to the recurrence

 $c_0T[n] + c_1T[n-1] + \cdots + c_kT[n-k] = 0$

Let λ_i , i = 1, ..., m be the (complex) roots of $P[\lambda]$ with multiplicities ℓ_i . Then the general solution to the recurrence is given by

$$T[n] = \sum_{i=1}^{m} \sum_{j=0}^{\ell_i-1} \alpha_{ij} \cdot (n^j \lambda_i^n) .$$

The full proof is omitted. We have only shown that any choice of α_{ij} 's is a solution to the recurrence.

$$T[0] = 0$$

 $T[1] = 1$
 $T[n] = T[n-1] + T[n-2]$ for $n \ge 2$

The characteristic polynomial is

$$\lambda^2 - \lambda - 1$$

Finding the roots, gives

$$\lambda_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \left(1 \pm \sqrt{5} \right)$$

6.3 The Characteristic Polynomial

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 83/609

$$T[0] = 0$$

 $T[1] = 1$
 $T[n] = T[n-1] + T[n-2]$ for $n \ge 2$

The characteristic polynomial is

$$\lambda^2 - \lambda - 1$$

Finding the roots, gives

$$\lambda_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \left(1 \pm \sqrt{5} \right)$$

6.3 The Characteristic Polynomial

◆ @ ▶ ◆ 臺 ▶ **◆** 臺 ▶ 83/609

$$T[0] = 0$$

 $T[1] = 1$
 $T[n] = T[n-1] + T[n-2]$ for $n \ge 2$

The characteristic polynomial is

$$\lambda^2-\lambda-1$$

Finding the roots, gives

$$\lambda_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \left(1 \pm \sqrt{5} \right)$$

6.3 The Characteristic Polynomial

▲ 個 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 83/609

Hence, the solution is of the form

$$\alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n$$

6.3 The Characteristic Polynomial

▲ @ ▶ ▲ ≧ ▶ ▲ ≧ ▶ 84/609

Hence, the solution is of the form

$$\alpha\left(\frac{1+\sqrt{5}}{2}\right)^n + \beta\left(\frac{1-\sqrt{5}}{2}\right)^n$$

T[0] = 0 gives $\alpha + \beta = 0$.

6.3 The Characteristic Polynomial

▲ @ ▶ ▲ ≧ ▶ ▲ ≧ ▶ 84/609

Hence, the solution is of the form

$$\alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$T[0] = 0$$
 gives $\alpha + \beta = 0$.

T[1] = 1 gives

$$\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1$$

EADS © Ernst Mayr, Harald Räcke 6.3 The Characteristic Polynomial

◆ @ ▶ ◆ 置 ▶ **◆** 置 ▶ 84/609

Hence, the solution is of the form

$$\alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$T[0] = 0$$
 gives $\alpha + \beta = 0$.

T[1] = 1 gives

$$\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1 \Longrightarrow \alpha-\beta=\frac{2}{\sqrt{5}}$$

EADS © Ernst Mayr, Harald Räcke 6.3 The Characteristic Polynomial

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 84/609

Hence, the solution is

$$\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

6.3 The Characteristic Polynomial

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 85/609

Consider the recurrence relation:

 $c_0 T(n) + c_1 T(n-1) + c_2 T(n-2) + \dots + c_k T(n-k) = f(n)$ with $f(n) \neq 0$.

While we have a fairly general technique for solving homogeneous, linear recurrence relations the inhomogeneous case is different.

The general solution of the recurrence relation is

$$T(n) = T_h(n) + T_p(n)$$
 ,

where T_h is any solution to the homogeneous equation, and T_p is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

6.3 The Characteristic Polynomial

The general solution of the recurrence relation is

$$T(n) = T_h(n) + T_p(n)$$
 ,

where T_h is any solution to the homogeneous equation, and T_p is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

Example:

T[n] = T[n-1] + 1 T[0] = 1

Then,

T[n-1] = T[n-2] + 1 $(n \ge 2)$

Subtracting the first from the second equation gives,

$$T[n] - T[n-1] = T[n-1] - T[n-2] \qquad (n \ge 2)$$

or

$$T[n] = 2T[n-1] - T[n-2] \qquad (n \ge 2)$$

I get a completely determined recurrence if I add T[0] = 1 and T[1] = 2.

50,00	EADS © Ernst Mayr, Harald	
	© Ernst Mayr, Harald	Räcke

6.3 The Characteristic Polynomial

Example:

$$T[n] = T[n-1] + 1$$
 $T[0] = 1$

Then,

$$T[n-1] = T[n-2] + 1$$
 $(n \ge 2)$

Subtracting the first from the second equation gives,

$$T[n] - T[n-1] = T[n-1] - T[n-2] \qquad (n \ge 2)$$

or

$$T[n] = 2T[n-1] - T[n-2] \qquad (n \ge 2)$$

I get a completely determined recurrence if I add T[0] = 1 and T[1] = 2.

EADS ©Ernst Mayr, Harald Räcke 6.3 The Characteristic Polynomial

◆ @ ▶ ◆ 臺 ▶ **◆** 臺 ▶ 88/609

Example:

$$T[n] = T[n-1] + 1$$
 $T[0] = 1$

Then,

$$T[n-1] = T[n-2] + 1 \qquad (n \ge 2)$$

Subtracting the first from the second equation gives,

$$T[n] - T[n-1] = T[n-1] - T[n-2] \qquad (n \ge 2)$$

or

$$T[n] = 2T[n-1] - T[n-2]$$
 $(n \ge 2)$

I get a completely determined recurrence if I add T[0] = 1 and T[1] = 2.

6.3 The Characteristic Polynomial

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 88/609

Example:

$$T[n] = T[n-1] + 1$$
 $T[0] = 1$

Then,

$$T[n-1] = T[n-2] + 1 \qquad (n \ge 2)$$

Subtracting the first from the second equation gives,

$$T[n] - T[n-1] = T[n-1] - T[n-2] \qquad (n \ge 2)$$

or

$$T[n] = 2T[n-1] - T[n-2] \qquad (n \ge 2)$$

I get a completely determined recurrence if I add T[0] = 1 and T[1] = 2.

EADS © Ernst Mayr, Harald Räcke 6.3 The Characteristic Polynomial

◆ 個 ト ◆ 三 ト ◆ 三 ト 88/609

Example:

$$T[n] = T[n-1] + 1$$
 $T[0] = 1$

Then,

$$T[n-1] = T[n-2] + 1 \qquad (n \ge 2)$$

Subtracting the first from the second equation gives,

$$T[n] - T[n-1] = T[n-1] - T[n-2] \qquad (n \ge 2)$$

or

$$T[n] = 2T[n-1] - T[n-2] \qquad (n \ge 2)$$

I get a completely determined recurrence if I add T[0] = 1 and T[1] = 2.

Example: Characteristic polynomial:

$$\lambda^2 - 2\lambda + 1 = 0$$

6.3 The Characteristic Polynomial

Example: Characteristic polynomial:

$$\underbrace{\lambda^2 - 2\lambda + 1}_{(\lambda - 1)^2} = 0$$

6.3 The Characteristic Polynomial

▲ 個 ▶ < E ▶ < E ▶</p>89/609

Example: Characteristic polynomial:

$$\underbrace{\lambda^2 - 2\lambda + 1}_{(\lambda - 1)^2} = 0$$

Then the solution is of the form

$$T[n] = \alpha 1^n + \beta n 1^n = \alpha + \beta n$$

6.3 The Characteristic Polynomial

Example: Characteristic polynomial:

$$\underbrace{\lambda^2 - 2\lambda + 1}_{(\lambda - 1)^2} = 0$$

Then the solution is of the form

$$T[n] = \alpha 1^n + \beta n 1^n = \alpha + \beta n$$

T[0] = 1 gives $\alpha = 1$.

6.3 The Characteristic Polynomial

Example: Characteristic polynomial:

$$\underbrace{\lambda^2 - 2\lambda + 1}_{(\lambda - 1)^2} = 0$$

Then the solution is of the form

$$T[n] = \alpha 1^n + \beta n 1^n = \alpha + \beta n$$

T[0] = 1 gives $\alpha = 1$.

$$T[1] = 2$$
 gives $1 + \beta = 2 \Longrightarrow \beta = 1$.

EADS © Ernst Mayr, Harald Räcke 6.3 The Characteristic Polynomial

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 89/609

If f(n) is a polynomial of degree r this method can be applied r + 1 times to obtain a homogeneous equation:

 $T[n] = T[n-1] + n^2$

Shift:

 $T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$

Difference:

T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1

T[n] = 2T[n-1] - T[n-2] + 2n - 1

6.3 The Characteristic Polynomial

· **◆ 谭 ▶** ◆ ≣ ▶ 90/609

If f(n) is a polynomial of degree r this method can be applied r + 1 times to obtain a homogeneous equation:

$$T[n] = T[n-1] + n^2$$

Shift:

 $T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$

Difference:

T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1

T[n] = 2T[n-1] - T[n-2] + 2n - 1

6.3 The Characteristic Polynomial

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 90/609

If f(n) is a polynomial of degree r this method can be applied r + 1 times to obtain a homogeneous equation:

$$T[n] = T[n-1] + n^2$$

Shift:

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

Difference:

T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1

T[n] = 2T[n-1] - T[n-2] + 2n - 1

6.3 The Characteristic Polynomial

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 90/609

If f(n) is a polynomial of degree r this method can be applied r + 1 times to obtain a homogeneous equation:

$$T[n] = T[n-1] + n^2$$

Shift:

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

Difference:

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

T[n] = 2T[n-1] - T[n-2] + 2n - 1

6.3 The Characteristic Polynomial

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 90/609

If f(n) is a polynomial of degree r this method can be applied r + 1 times to obtain a homogeneous equation:

$$T[n] = T[n-1] + n^2$$

Shift:

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

Difference:

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

T[n] = 2T[n-1] - T[n-2] + 2n - 1

6.3 The Characteristic Polynomial

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 90/609

If f(n) is a polynomial of degree r this method can be applied r + 1 times to obtain a homogeneous equation:

$$T[n] = T[n-1] + n^2$$

Shift:

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

Difference:

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

6.3 The Characteristic Polynomial

▲ ● < ● < ● < ● < ● < ●
 91/609

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$

6.3 The Characteristic Polynomial

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$
$$= 2T[n-2] - T[n-3] + 2n - 3$$

6.3 The Characteristic Polynomial

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$
$$= 2T[n-2] - T[n-3] + 2n - 3$$

Difference:

$$T[n] - T[n-1] = 2T[n-1] - T[n-2] + 2n - 1$$
$$- 2T[n-2] + T[n-3] - 2n + 3$$

6.3 The Characteristic Polynomial

● 週 ▶ ● 重 ▶ ● 重 ▶ 91/609

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$
$$= 2T[n-2] - T[n-3] + 2n - 3$$

Difference:

$$T[n] - T[n-1] = 2T[n-1] - T[n-2] + 2n - 1$$
$$- 2T[n-2] + T[n-3] - 2n + 3$$

$$T[n] = 3T[n-1] - 3T[n-2] + T[n-3] + 2$$

6.3 The Characteristic Polynomial

◆ 週 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 91/609

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$
$$= 2T[n-2] - T[n-3] + 2n - 3$$

Difference:

$$T[n] - T[n-1] = 2T[n-1] - T[n-2] + 2n - 1$$
$$- 2T[n-2] + T[n-3] - 2n + 3$$

$$T[n] = 3T[n-1] - 3T[n-2] + T[n-3] + 2$$

and so on...

© Ernst Mayr, Harald Räcke

EADS

▲ 個 → < E → < E →
 91/609
</p>

Definition 4 (Generating Function)

Let $(a_n)_{n \ge 0}$ be a sequence. The corresponding

generating function (Erzeugendenfunktion) is

$$F(z) := \sum_{n \ge 0} a_n z^n;$$

 exponential generating function (exponentielle Erzeugendenfunktion) is

$$F(z) = \sum_{n \ge 0} \frac{a_n}{n!} z^n.$$

6.4 Generating Functions

<日本 ● ● < 目 → < 目 → 92/609

Definition 4 (Generating Function)

Let $(a_n)_{n \ge 0}$ be a sequence. The corresponding

generating function (Erzeugendenfunktion) is

$$F(z) := \sum_{n \ge 0} a_n z^n;$$

 exponential generating function (exponentielle Erzeugendenfunktion) is

$$F(z) = \sum_{n\geq 0} \frac{a_n}{n!} z^n.$$

EADS © Ernst Mayr, Harald Räcke 6.4 Generating Functions

◆ 圖 ▶ < 圖 ▶ < 圖 ▶</p>
92/609

Example 5

1. The generating function of the sequence $(1,0,0,\ldots)$ is

 $F(z)=1\,.$

2. The generating function of the sequence (1, 1, 1, ...) is

$$F(z)=\frac{1}{1-z}\,.$$

6.4 Generating Functions

◆ 個 ト ◆ 聖 ト ◆ 聖 ト 93/609

Example 5

1. The generating function of the sequence (1, 0, 0, ...) is

F(z)=1.

2. The generating function of the sequence (1, 1, 1, ...) is

$$F(z)=\frac{1}{1-z}.$$

EADS © Ernst Mayr, Harald Räcke 6.4 Generating Functions

▲ 個 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 93/609

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let $f = \sum_{n\geq 0} a_n z^n$ and $g = \sum_{n\geq 0} b_n z^n$.

- Equality: f and g are equal if a_n = b_n for all n.
- Addition: $f + g := \sum_{n \ge 0} (a_n + b_n) z^n$.
- Multiplication: $f \cdot g := \sum_{n \ge 0} c_n z^n$ with $c = \sum_{p=0}^n a_p b_{n-p}$.

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let $f = \sum_{n\geq 0} a_n z^n$ and $g = \sum_{n\geq 0} b_n z^n$.

- Equality: f and g are equal if a_n = b_n for all n.
- Addition: $f + g := \sum_{n \ge 0} (a_n + b_n) z^n$.
- Multiplication: $f \cdot g := \sum_{n \ge 0} c_n z^n$ with $c = \sum_{p=0}^n a_p b_{n-p}$.

There are no convergence issues here.

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let $f = \sum_{n\geq 0} a_n z^n$ and $g = \sum_{n\geq 0} b_n z^n$.

- Equality: f and g are equal if a_n = b_n for all n.
- Addition: $f + g := \sum_{n \ge 0} (a_n + b_n) z^n$
- Multiplication: $f \cdot g := \sum_{n \ge 0} c_n z^n$ with $c = \sum_{p=0}^n a_p b_{n-p}$.

There are no convergence issues here.

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let
$$f = \sum_{n\geq 0} a_n z^n$$
 and $g = \sum_{n\geq 0} b_n z^n$.

- Equality: f and g are equal if a_n = b_n for all n.
- Addition: $f + g := \sum_{n \ge 0} (a_n + b_n) z^n$
- Multiplication: $f \cdot g := \sum_{n \ge 0} c_n z^n$ with $c = \sum_{p=0}^n a_p b_{n-p}$.

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let
$$f = \sum_{n\geq 0} a_n z^n$$
 and $g = \sum_{n\geq 0} b_n z^n$.

- Equality: f and g are equal if $a_n = b_n$ for all n.
- Addition: $f + g := \sum_{n \ge 0} (a_n + b_n) z^n$.
- Multiplication: $f \cdot g := \sum_{n \ge 0} c_n z^n$ with $c = \sum_{p=0}^n a_p b_{n-p}$.

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let
$$f = \sum_{n\geq 0} a_n z^n$$
 and $g = \sum_{n\geq 0} b_n z^n$.

- Equality: f and g are equal if $a_n = b_n$ for all n.
- Addition: $f + g := \sum_{n \ge 0} (a_n + b_n) z^n$.

• Multiplication: $f \cdot g := \sum_{n \ge 0} c_n z^n$ with $c = \sum_{p=0}^n a_p b_{n-p}$.

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let
$$f = \sum_{n\geq 0} a_n z^n$$
 and $g = \sum_{n\geq 0} b_n z^n$.

- Equality: f and g are equal if $a_n = b_n$ for all n.
- Addition: $f + g := \sum_{n \ge 0} (a_n + b_n) z^n$.
- Multiplication: $f \cdot g := \sum_{n \ge 0} c_n z^n$ with $c = \sum_{p=0}^n a_p b_{n-p}$.

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let
$$f = \sum_{n\geq 0} a_n z^n$$
 and $g = \sum_{n\geq 0} b_n z^n$.

- Equality: f and g are equal if $a_n = b_n$ for all n.
- Addition: $f + g := \sum_{n \ge 0} (a_n + b_n) z^n$.
- Multiplication: $f \cdot g := \sum_{n \ge 0} c_n z^n$ with $c = \sum_{p=0}^n a_p b_{n-p}$.

The arithmetic view:

We view a power series as a function $f : \mathbb{C} \to \mathbb{C}$.

Then, it is important to think about convergence/convergence radius etc.

6.4 Generating Functions

The arithmetic view:

We view a power series as a function $f : \mathbb{C} \to \mathbb{C}$.

Then, it is important to think about convergence/convergence radius etc.

The arithmetic view:

We view a power series as a function $f : \mathbb{C} \to \mathbb{C}$.

Then, it is important to think about convergence/convergence radius etc.

What does $\sum_{n\geq 0} z^n = \frac{1}{1-z}$ mean in the algebraic view?

It means that the power series 1 - z and the power series $\sum_{n\geq 0} z^n$ are invers, i.e.,

$$(1-z)\cdot\left(\sum_{n\geq 0}^{\infty}z^n\right)=1$$
.

This is well-defined.

6.4 Generating Functions

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 96/609

What does $\sum_{n\geq 0} z^n = \frac{1}{1-z}$ mean in the algebraic view?

It means that the power series 1 - z and the power series $\sum_{n \ge 0} z^n$ are invers, i.e.,

$$(1-z)\cdot\left(\sum_{n\geq 0}^{\infty}z^n\right)=1$$

This is well-defined.

What does $\sum_{n\geq 0} z^n = \frac{1}{1-z}$ mean in the algebraic view?

It means that the power series 1 - z and the power series $\sum_{n \ge 0} z^n$ are invers, i.e.,

$$(1-z)\cdot\left(\sum_{n\geq 0}^{\infty}z^n\right)=1$$

This is well-defined.

Suppose we are given the generating function

$$\sum_{n\geq 0} z^n = \frac{1}{1-z} \; .$$

6.4 Generating Functions

◆ @ ▶ ◆ 臺 ▶ ◆ 臺 ▶ 97/609

Suppose we are given the generating function

$$\sum_{n\geq 0} z^n = \frac{1}{1-z} \; .$$

We can compute the derivative:

$$\sum_{n \ge 1} n z^{n-1} = \frac{1}{(1-z)^2}$$

6.4 Generating Functions

Suppose we are given the generating function

$$\sum_{n\geq 0} z^n = \frac{1}{1-z} \; .$$

We can compute the derivative:

$$\underbrace{\sum_{n\geq 1} nz^{n-1}}_{\sum_{n\geq 0} (n+1)z^n} = \frac{1}{(1-z)^2}$$

6.4 Generating Functions

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 97/609

Suppose we are given the generating function

$$\sum_{n\geq 0} z^n = \frac{1}{1-z} \; .$$

We can compute the derivative:

$$\underbrace{\sum_{n \ge 1} nz^{n-1}}_{\sum_{n \ge 0} (n+1)z^n} = \frac{1}{(1-z)^2}$$

Hence, the generating function of the sequence $a_n = n + 1$ is $1/(1-z)^2$.

We can repeat this

6.4 Generating Functions

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 98/609

We can repeat this

$$\sum_{n\geq 0} (n+1)z^n = \frac{1}{(1-z)^2} \; .$$

6.4 Generating Functions

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 98/609

We can repeat this

$$\sum_{n\geq 0} (n+1)z^n = \frac{1}{(1-z)^2} \; .$$

Derivative:

$$\sum_{n\geq 1} n(n+1)z^{n-1} = \frac{2}{(1-z)^3}$$

6.4 Generating Functions

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 98/609

We can repeat this

$$\sum_{n\geq 0} (n+1)z^n = \frac{1}{(1-z)^2} \; .$$

Derivative:

$$\underbrace{\sum_{n\geq 1} n(n+1)z^{n-1}}_{\sum_{n\geq 0}(n+1)(n+2)z^n} = \frac{2}{(1-z)^3}$$

6.4 Generating Functions

◆ 個 ト ◆ 三 ト ◆ 三 ト 98/609

We can repeat this

$$\sum_{n\geq 0} (n+1)z^n = \frac{1}{(1-z)^2} \; .$$

Derivative:

$$\underbrace{\sum_{n\geq 1} n(n+1)z^{n-1}}_{\sum_{n\geq 0}(n+1)(n+2)z^n} = \frac{2}{(1-z)^3}$$

Hence, the generating function of the sequence $a_n = (n+1)(n+2)$ is $\frac{2}{(1-z)^3}$.

EADS © Ernst Mayr, Harald Räcke 6.4 Generating Functions

◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ 98/609

Computing the *k*-th derivative of $\sum z^n$.

6.4 Generating Functions

◆ @ ▶ ◆ 臣 ▶ **◆** 臣 ▶ 99/609

Computing the *k*-th derivative of $\sum z^n$.

$$\sum_{n\geq k}n(n-1)\cdot\ldots\cdot(n-k+1)z^{n-k}$$

6.4 Generating Functions

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 99/609

Computing the *k*-th derivative of $\sum z^n$.

$$\sum_{n\geq k} n(n-1)\cdot\ldots\cdot(n-k+1)z^{n-k} = \sum_{n\geq 0} (n+k)\cdot\ldots\cdot(n+1)z^n$$

Computing the *k*-th derivative of $\sum z^n$.

$$\sum_{n \ge k} n(n-1) \cdot \ldots \cdot (n-k+1) z^{n-k} = \sum_{n \ge 0} (n+k) \cdot \ldots \cdot (n+1) z^n$$
$$= \frac{k!}{(1-z)^{k+1}} .$$

6.4 Generating Functions

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 99/609

Computing the *k*-th derivative of $\sum z^n$.

$$\sum_{n\geq k} n(n-1)\cdot\ldots\cdot(n-k+1)z^{n-k} = \sum_{n\geq 0} (n+k)\cdot\ldots\cdot(n+1)z^n$$
$$= \frac{k!}{(1-z)^{k+1}} .$$

Hence:

$$\sum_{n\geq 0} \binom{n+k}{k} z^n = \frac{1}{(1-z)^{k+1}} \quad .$$

6.4 Generating Functions

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 99/609

Computing the *k*-th derivative of $\sum z^n$.

$$\sum_{n \ge k} n(n-1) \cdot \ldots \cdot (n-k+1) z^{n-k} = \sum_{n \ge 0} (n+k) \cdot \ldots \cdot (n+1) z^n$$
$$= \frac{k!}{(1-z)^{k+1}} .$$

Hence:

$$\sum_{n\geq 0} \binom{n+k}{k} z^n = \frac{1}{(1-z)^{k+1}} \ .$$

The generating function of the sequence $a_n = \binom{n+k}{k}$ is $\frac{1}{(1-z)^{k+1}}$.

6.4 Generating Functions

▲ □ ► ▲ Ξ ► ▲ Ξ ► 99/609

$$\sum_{n\geq 0} nz^n = \sum_{n\geq 0} (n+1)z^n - \sum_{n\geq 0} z^n$$

6.4 Generating Functions

◆ 週 ▶ ◆ 聖 ▶ ◆ 聖 ▶ 100/609

$$\sum_{n\geq 0} nz^n = \sum_{n\geq 0} (n+1)z^n - \sum_{n\geq 0} z^n$$
$$= \frac{1}{(1-z)^2} - \frac{1}{1-z}$$

6.4 Generating Functions

$$\sum_{n \ge 0} n z^n = \sum_{n \ge 0} (n+1) z^n - \sum_{n \ge 0} z^n$$
$$= \frac{1}{(1-z)^2} - \frac{1}{1-z}$$
$$= \frac{z}{(1-z)^2}$$

6.4 Generating Functions

◆ 個 ▶ 《 臣 ▶ 《 臣 ▶ 100/609

$$\sum_{n \ge 0} n z^n = \sum_{n \ge 0} (n+1) z^n - \sum_{n \ge 0} z^n$$
$$= \frac{1}{(1-z)^2} - \frac{1}{1-z}$$
$$= \frac{z}{(1-z)^2}$$

The generating function of the sequence $a_n = n$ is $\frac{z}{(1-z)^2}$.

6.4 Generating Functions

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 100/609

We know

$$\sum_{n\geq 0} \mathcal{Y}^n = \frac{1}{1-\mathcal{Y}}$$

Hence,

$$\sum_{n\ge 0}a^nz^n=\frac{1}{1-az}$$

The generating function of the sequence $f_n = a^n$ is $\frac{1}{1-a_2}$.

6.4 Generating Functions

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 101/609

We know

$$\sum_{n\geq 0} \mathcal{Y}^n = \frac{1}{1-\mathcal{Y}}$$

Hence,

$$\sum_{n\geq 0} a^n z^n = \frac{1}{1-az}$$

The generating function of the sequence $f_n = a^n$ is $\frac{1}{1-a_2}$.

6.4 Generating Functions

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 101/609

We know

$$\sum_{n\geq 0} \mathcal{Y}^n = \frac{1}{1-\mathcal{Y}}$$

Hence,

$$\sum_{n\geq 0} a^n z^n = \frac{1}{1-az}$$

The generating function of the sequence $f_n = a^n$ is $\frac{1}{1-az}$.

EADS © Ernst Mayr, Harald Räcke 6.4 Generating Functions

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 101/609

Suppose we have the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

A(z)

Suppose we have the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

$$A(z) = \sum_{n \ge 0} a_n z^n$$

6.4 Generating Functions

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 102/609

Suppose we have the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} (a_{n-1} + 1) z^n$

Suppose we have the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} (a_{n-1} + 1) z^n$
= $1 + z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} z^n$

Suppose we have the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} (a_{n-1} + 1) z^n$
= $1 + z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} z^n$
= $z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} z^n$

EADS © Ernst Mayr, Harald Räcke 6.4 Generating Functions

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 102/609

Suppose we have the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} (a_{n-1} + 1) z^n$
= $1 + z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} z^n$
= $z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} z^n$
= $zA(z) + \sum_{n \ge 0} z^n$

Suppose we have the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} (a_{n-1} + 1) z^n$
= $1 + z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} z^n$
= $z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} z^n$
= $zA(z) + \sum_{n \ge 0} z^n$
= $zA(z) + \frac{1}{1-z}$

6.4 Generating Functions

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 102/609

Solving for A(z) gives

6.4 Generating Functions

◆ @ ▶ ◆ 臺 ▶ **◆** 臺 ▶ 103/609

Solving for A(z) gives

$$A(z) = \frac{1}{(1-z)^2}$$

6.4 Generating Functions

◆ @ ▶ ◆ 臺 ▶ **◆** 臺 ▶ 103/609

Solving for A(z) gives

$$\sum_{n \ge 0} a_n z^n = A(z) = \frac{1}{(1-z)^2}$$

6.4 Generating Functions

◆ @ ▶ ◆ 臺 ▶ **◆** 臺 ▶ 103/609

Solving for A(z) gives

$$\sum_{n \ge 0} a_n z^n = A(z) = \frac{1}{(1-z)^2} = \sum_{n \ge 0} (n+1) z^n$$

6.4 Generating Functions

◆ @ ▶ ◆ 臺 ▶ **◆** 臺 ▶ 103/609

Solving for A(z) gives

$$\sum_{n\geq 0} a_n z^n = A(z) = \frac{1}{(1-z)^2} = \sum_{n\geq 0} (n+1) z^n$$

Hence, $a_n = n + 1$.

6.4 Generating Functions

◆ 個 ト ◆ 注 ト ◆ 注 ト 103/609

n-th sequence element	generating function

n-th sequence element	generating function
1	$\frac{1}{1-z}$

n-th sequence element	generating function
1	$\frac{1}{1-z}$
n+1	$\frac{1}{(1-z)^2}$

n-th sequence element	generating function
1	$\frac{1}{1-z}$
n + 1	$\frac{1}{(1-z)^2}$
$\binom{n+k}{k}$	$\frac{1}{(1-z)^{k+1}}$

n-th sequence element	generating function
1	$\frac{1}{1-z}$
n + 1	$\frac{1}{(1-z)^2}$
$\binom{n+k}{k}$	$\frac{1}{(1-z)^{k+1}}$
n	$rac{z}{(1-z)^2}$

n-th sequence element	generating function
1	$\frac{1}{1-z}$
n+1	$\frac{1}{(1-z)^2}$
$\binom{n+k}{k}$	$\frac{1}{(1-z)^{k+1}}$
n	$\frac{z}{(1-z)^2}$
a^n	$\frac{1}{1-az}$

n-th sequence element	generating function
1	$\frac{1}{1-z}$
n + 1	$\frac{1}{(1-z)^2}$
$\binom{n+k}{k}$	$\frac{1}{(1-z)^{k+1}}$
n	$\frac{z}{(1-z)^2}$
a^n	$\frac{1}{1-az}$
n^2	$\frac{z(1+z)}{(1-z)^3}$

n-th sequence element	generating function
1	$\frac{1}{1-z}$
n+1	$\frac{1}{(1-z)^2}$
$\binom{n+k}{k}$	$\frac{1}{(1-z)^{k+1}}$
n	$\frac{z}{(1-z)^2}$
a^n	$\frac{1}{1-az}$
n^2	$\frac{z(1+z)}{(1-z)^3}$
$\frac{1}{n!}$	e ^z

n-th sequence element	generating function

n-th sequence element	generating function
cf_n	cF

n-th sequence element	generating function
cf_n	cF
$f_n + g_n$	F + G

n-th sequence element	generating function
cf_n	cF
$f_n + g_n$	F + G
$\sum_{i=0}^{n} f_i g_{n-i}$	$F \cdot G$

n-th sequence element	generating function
cf_n	cF
$f_n + g_n$	F + G
$\sum_{i=0}^{n} f_i g_{n-i}$	$F \cdot G$
f_{n-k} $(n \ge k); 0$ otw.	z^kF

n-th sequence element	generating function
cf_n	cF
$f_n + g_n$	F + G
$\sum_{i=0}^{n} f_i g_{n-i}$	$F \cdot G$
f_{n-k} $(n \ge k); 0$ otw.	$z^k F$
$\sum_{i=0}^{n} f_i$	$\frac{F(z)}{1-z}$

n-th sequence element	generating function
cf_n	cF
$f_n + g_n$	F + G
$\sum_{i=0}^{n} f_i g_{n-i}$	$F \cdot G$
f_{n-k} $(n \ge k); 0$ otw.	$z^k F$
$\sum_{i=0}^{n} f_i$	$\frac{F(z)}{1-z}$
nf_n	$z \frac{\mathrm{d}F(z)}{\mathrm{d}z}$

n-th sequence element	generating function
cf_n	cF
$f_n + g_n$	F + G
$\sum_{i=0}^{n} f_{i} g_{n-i}$	$F \cdot G$
f_{n-k} $(n \ge k); 0$ otw.	$z^k F$
$\sum_{i=0}^{n} f_i$	$\frac{F(z)}{1-z}$
nf_n	$z \frac{\mathrm{d}F(z)}{\mathrm{d}z}$
$c^n f_n$	F(cz)

1. Set $A(z) = \sum_{n \ge 0} a_n z^n$.

6.4 Generating Functions

◆ 圖 ▶ < 圖 ▶ < 圖 ▶ 106/609

1. Set
$$A(z) = \sum_{n \ge 0} a_n z^n$$
.

2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.

1. Set $A(z) = \sum_{n \ge 0} a_n z^n$.

- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- **3.** Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).

- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- **3.** Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- 4. Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.

- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- **3.** Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- 4. Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.
- 5. Write f(z) as a formal power series. Techniques:

- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- **3.** Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- 4. Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.
- 5. Write f(z) as a formal power series. Techniques:
 - partial fraction decomposition (Partialbruchzerlegung)

- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- **3.** Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- 4. Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.
- 5. Write f(z) as a formal power series. Techniques:
 - partial fraction decomposition (Partialbruchzerlegung)
 - lookup in tables

- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- **3.** Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- 4. Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.
- 5. Write f(z) as a formal power series. Techniques:
 - partial fraction decomposition (Partialbruchzerlegung)
 - lookup in tables
- **6.** The coefficients of the resulting power series are the a_n .

1. Set up generating function:

6.4 Generating Functions

◆ 個 ト ◆ 国 ト ◆ 国 ト 107/609

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

6.4 Generating Functions

◆ @ ▶ ◆ 臺 ▶ **◆** 臺 ▶ 107/609

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

2. Transform right hand side so that recurrence can be plugged in:

6.4 Generating Functions

◆ @ ▶ ◆ 聖 ▶ **◆** 聖 ▶ 107/609

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

2. Transform right hand side so that recurrence can be plugged in:

$$A(z) = a_0 + \sum_{n \ge 1} a_n z^n$$

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

2. Transform right hand side so that recurrence can be plugged in:

$$A(z) = a_0 + \sum_{n \ge 1} a_n z^n$$

2. Plug in:

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

2. Transform right hand side so that recurrence can be plugged in:

$$A(z) = a_0 + \sum_{n \ge 1} a_n z^n$$

2. Plug in:

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

6.4 Generating Functions

<日本 → < 注 → < 注 → 108/609

3. Transform right hand side so that infinite sums can be replaced by A(z) or by simple function.

3. Transform right hand side so that infinite sums can be replaced by A(z) or by simple function.

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

3. Transform right hand side so that infinite sums can be replaced by A(z) or by simple function.

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$
$$= 1 + 2z \sum_{n \ge 1} a_{n-1}z^{n-1}$$

3. Transform right hand side so that infinite sums can be replaced by A(z) or by simple function.

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

= 1 + 2z $\sum_{n \ge 1} a_{n-1}z^{n-1}$
= 1 + 2z $\sum_{n \ge 0} a_n z^n$

3. Transform right hand side so that infinite sums can be replaced by A(z) or by simple function.

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

= 1 + 2z $\sum_{n \ge 1} a_{n-1}z^{n-1}$
= 1 + 2z $\sum_{n \ge 0} a_n z^n$
= 1 + 2z $\cdot A(z)$

3. Transform right hand side so that infinite sums can be replaced by A(z) or by simple function.

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

= 1 + 2z $\sum_{n \ge 1} a_{n-1}z^{n-1}$
= 1 + 2z $\sum_{n \ge 0} a_n z^n$
= 1 + 2z $\cdot A(z)$

4. Solve for A(z).

3. Transform right hand side so that infinite sums can be replaced by A(z) or by simple function.

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

= $1 + 2z \sum_{n \ge 1} a_{n-1}z^{n-1}$
= $1 + 2z \sum_{n \ge 0} a_n z^n$
= $1 + 2z \cdot A(z)$
4. Solve for $A(z)$.
 $A(z) = \frac{1}{1 - 2z}$

6.4 Generating Functions

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 108/609

5. Rewrite f(z) as a power series:

$$A(z) = \frac{1}{1 - 2z}$$

6.4 Generating Functions

◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ 109/609

5. Rewrite f(z) as a power series:

$$\sum_{n\geq 0} a_n z^n = A(z) = \frac{1}{1-2z}$$

6.4 Generating Functions

< @ ▶ < ছ ▶ < ছ ▶ 109/609

5. Rewrite f(z) as a power series:

$$\sum_{n \ge 0} a_n z^n = A(z) = \frac{1}{1 - 2z} = \sum_{n \ge 0} 2^n z^n$$

6.4 Generating Functions

◆ @ ▶ ◆ 臺 ▶ **◆** 臺 ▶ 109/609

1. Set up generating function:

6.4 Generating Functions

◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ 110/609

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

6.4 Generating Functions

◆ 個 ト ◆ 注 ト ◆ 注 ト 110/609

2./3. Transform right hand side:

2./3. Transform right hand side:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

6.4 Generating Functions

◆ 個 ▶ ◆ 国 ▶ ◆ 国 ▶ 111/609

2./3. Transform right hand side:

$$A(z) = \sum_{n \ge 0} a_n z^n$$
$$= a_0 + \sum_{n \ge 1} a_n z^n$$

6.4 Generating Functions

◆ 個 ▶ ◆ 国 ▶ ◆ 国 ▶ 111/609

2./3. Transform right hand side:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} a_n z^n$
= $1 + \sum_{n \ge 1} (3a_{n-1} + n) z^n$

6.4 Generating Functions

◆ 個 ▶ ◆ 国 ▶ ◆ 国 ▶ 111/609

2./3. Transform right hand side:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} a_n z^n$
= $1 + \sum_{n \ge 1} (3a_{n-1} + n) z^n$
= $1 + 3z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} n z^n$

2./3. Transform right hand side:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} a_n z^n$
= $1 + \sum_{n \ge 1} (3a_{n-1} + n) z^n$
= $1 + 3z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} n z^n$
= $1 + 3z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} n z^n$

EADS © Ernst Mayr, Harald Räcke 6.4 Generating Functions

◆母 ▶ ◆ ヨ ▶ ◆ ヨ ▶ 111/609

2./3. Transform right hand side:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} a_n z^n$
= $1 + \sum_{n \ge 1} (3a_{n-1} + n) z^n$
= $1 + 3z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} n z^n$
= $1 + 3z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} n z^n$
= $1 + 3zA(z) + \frac{z}{(1-z)^2}$

6.4 Generating Functions

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 111/609

4. Solve for A(z):

6.4 Generating Functions

◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ 112/609

4. Solve for A(z):

$$A(z) = 1 + 3zA(z) + \frac{z}{(1-z)^2}$$

6.4 Generating Functions

◆ 個 ▶ ◆ 聖 ▶ ◆ 里 ▶ 112/609

4. Solve for A(z):

$$A(z) = 1 + 3zA(z) + \frac{z}{(1-z)^2}$$

gives

$$A(z) = \frac{(1-z)^2 + z}{(1-3z)(1-z)^2}$$

6.4 Generating Functions

◆ 個 ト ◆ 国 ト ◆ 国 ト 112/609

4. Solve for A(z):

$$A(z) = 1 + 3zA(z) + \frac{z}{(1-z)^2}$$

gives

$$A(z) = \frac{(1-z)^2 + z}{(1-3z)(1-z)^2} = \frac{z^2 - z + 1}{(1-3z)(1-z)^2}$$

6.4 Generating Functions

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 112/609

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

$$\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2}$$

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

$$\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}$$

6.4 Generating Functions

◆ 個 ▶ ◆ 聖 ▶ ◆ 里 ▶ 113/609

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

$$\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}$$

This gives

$$z^{2} - z + 1 = A(1 - z)^{2} + B(1 - 3z)(1 - z) + C(1 - 3z)$$

6.4 Generating Functions

◆ 個 ト ◆ 注 ト ◆ 注 ト 113/609

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

$$\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}$$

This gives

$$z^{2} - z + 1 = A(1 - z)^{2} + B(1 - 3z)(1 - z) + C(1 - 3z)$$
$$= A(1 - 2z + z^{2}) + B(1 - 4z + 3z^{2}) + C(1 - 3z)$$

EADS © Ernst Mayr, Harald Räcke 6.4 Generating Functions

◆ @ ▶ 《 图 ▶ 《 图 ▶ 113/609

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

$$\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}$$

This gives

$$z^{2} - z + 1 = A(1 - z)^{2} + B(1 - 3z)(1 - z) + C(1 - 3z)$$
$$= A(1 - 2z + z^{2}) + B(1 - 4z + 3z^{2}) + C(1 - 3z)$$
$$= (A + 3B)z^{2} + (-2A - 4B - 3C)z + (A + B + C)$$

6.4 Generating Functions

◆ @ ▶ ◆ 臺 ▶ **◆** 臺 ▶ 113/609

5. Write f(z) as a formal power series:

This leads to the following conditions:

$$A + B + C = 1$$
$$2A + 4B + 3C = 1$$
$$A + 3B = 1$$

5. Write f(z) as a formal power series:

This leads to the following conditions:

$$A + B + C = 1$$
$$2A + 4B + 3C = 1$$
$$A + 3B = 1$$

which gives

$$A = \frac{7}{4}$$
 $B = -\frac{1}{4}$ $C = -\frac{1}{2}$

6.4 Generating Functions

◆ 母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 114/609

5. Write f(z) as a formal power series:

6.4 Generating Functions

◆ 個 ▶ ◆ 聖 ▶ ◆ 里 ▶ 115/609

5. Write f(z) as a formal power series:

$$A(z) = \frac{7}{4} \cdot \frac{1}{1 - 3z} - \frac{1}{4} \cdot \frac{1}{1 - z} - \frac{1}{2} \cdot \frac{1}{(1 - z)^2}$$

6.4 Generating Functions

◆ 個 ▶ ◆ 聖 ▶ ◆ 里 ▶ 115/609

5. Write f(z) as a formal power series:

$$A(z) = \frac{7}{4} \cdot \frac{1}{1 - 3z} - \frac{1}{4} \cdot \frac{1}{1 - z} - \frac{1}{2} \cdot \frac{1}{(1 - z)^2}$$
$$= \frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n + 1) z^n$$

6.4 Generating Functions

◆ 個 ▶ ◆ 聖 ▶ ◆ 里 ▶ 115/609

5. Write f(z) as a formal power series:

$$\begin{aligned} A(z) &= \frac{7}{4} \cdot \frac{1}{1 - 3z} - \frac{1}{4} \cdot \frac{1}{1 - z} - \frac{1}{2} \cdot \frac{1}{(1 - z)^2} \\ &= \frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n + 1) z^n \\ &= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{4} - \frac{1}{2} (n + 1) \right) z^n \end{aligned}$$

6.4 Generating Functions

◆ @ ▶ ◆ 聖 ▶ ◆ 聖 ▶ 115/609

5. Write f(z) as a formal power series:

$$\begin{split} A(z) &= \frac{7}{4} \cdot \frac{1}{1 - 3z} - \frac{1}{4} \cdot \frac{1}{1 - z} - \frac{1}{2} \cdot \frac{1}{(1 - z)^2} \\ &= \frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n + 1) z^n \\ &= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{4} - \frac{1}{2} (n + 1) \right) z^n \\ &= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{2} n - \frac{3}{4} \right) z^n \end{split}$$

6.4 Generating Functions

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 115/609

5. Write f(z) as a formal power series:

$$A(z) = \frac{7}{4} \cdot \frac{1}{1 - 3z} - \frac{1}{4} \cdot \frac{1}{1 - z} - \frac{1}{2} \cdot \frac{1}{(1 - z)^2}$$
$$= \frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n + 1) z^n$$
$$= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{4} - \frac{1}{2}(n + 1)\right) z^n$$
$$= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{2}n - \frac{3}{4}\right) z^n$$

6. This means $a_n = \frac{7}{4}3^n - \frac{1}{2}n - \frac{3}{4}$.

FADS

© Ernst Mavr. Harald Räcke

6.4 Generating Functions

▲ 個 ▶ < E ▶ < E ▶ 115/609

6.5 Transformation of the Recurrence

Example 6

$$\begin{split} f_0 &= 1 \\ f_1 &= 2 \\ f_n &= f_{n-1} \cdot f_{n-2} \text{ for } n \geq 2 \;. \end{split}$$

6.5 Transformation of the Recurrence

▲ ● ◆ ● ◆ ● ◆
 ▲ ● ◆ ● ◆
 ● ◆ ● ◆
 ● ◆ ● ◆
 ● ◆ ● ◆
 ● ◆ ● ◆
 ● ◆ ● ◆
 ● ◆ ● ◆
 ● ◆ ● ◆
 ● ◆ ● ◆
 ● ◆ ● ◆
 ● ◆ ● ◆
 ● ◆ ● ◆
 ● ◆ ● ◆
 ● ◆ ● ◆
 ● ◆
 ● ◆ ● ◆
 ● ◆
 ● ◆ ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ● ◆
 ●

Example 6

$$egin{aligned} f_0 &= 1 \ f_1 &= 2 \ f_n &= f_{n-1} \cdot f_{n-2} \mbox{ for } n \geq 2 \ . \end{aligned}$$

Define

 $g_n := \log f_n$.

6.5 Transformation of the Recurrence

◆ @ ▶ ◆ 臣 ▶ **◆ 臣 ▶** 116/609

Example 6

$$egin{aligned} f_0 &= 1 \ f_1 &= 2 \ f_n &= f_{n-1} \cdot f_{n-2} \ \text{for} \ n &\geq 2 \ . \end{aligned}$$

Define

$$g_n := \log f_n$$
.

Then

$$g_n = g_{n-1} + g_{n-2}$$
 for $n \ge 2$

EADS © Ernst Mayr, Harald Räcke 6.5 Transformation of the Recurrence

◆ @ ▶ ◆ 臺 ▶ ◆ 臺 ▶ 116/609

Example 6

$$egin{aligned} f_0 &= 1 \ f_1 &= 2 \ f_n &= f_{n-1} \cdot f_{n-2} \ \text{for} \ n \geq 2 \ . \end{aligned}$$

Define

$$g_n := \log f_n$$
.

Then

FADS

© Ernst Mayr, Harald Räcke

$$g_n = g_{n-1} + g_{n-2}$$
 for $n \ge 2$
 $g_1 = \log 2 = 1$ (for $\log = \log_2$), $g_0 = 0$

6.5 Transformation of the Recurrence

Example 6

$$egin{aligned} f_0 &= 1 \ f_1 &= 2 \ f_n &= f_{n-1} \cdot f_{n-2} \ \text{for} \ n \geq 2 \ . \end{aligned}$$

Define

$$g_n := \log f_n$$
.

Then

EADS

© Ernst Mayr, Harald Räcke

$$g_n = g_{n-1} + g_{n-2}$$
 for $n \ge 2$
 $g_1 = \log 2 = 1$ (for $\log = \log_2$), $g_0 = 0$
 $g_n = F_n$ (*n*-th Fibonacci number)

6.5 Transformation of the Recurrence

Example 6

$$egin{aligned} f_0 &= 1 \ f_1 &= 2 \ f_n &= f_{n-1} \cdot f_{n-2} \ \text{for} \ n &\geq 2 \ . \end{aligned}$$

Define

$$g_n := \log f_n$$
.

Then

EADS

© Ernst Mayr, Harald Räcke

$$g_n = g_{n-1} + g_{n-2}$$
 for $n \ge 2$
 $g_1 = \log 2 = 1$ (for $\log = \log_2$), $g_0 = 0$
 $g_n = F_n$ (*n*-th Fibonacci number)
 $f_n = 2^{F_n}$

6.5 Transformation of the Recurrence

Example 7

$$f_1 = 1$$

 $f_n = 3f_{\frac{n}{2}} + n$; for $n = 2^k$, $k \ge 1$;

6.5 Transformation of the Recurrence

◆ 個 ト ◆ 国 ト ◆ 国 ト 117/609

Example 7

$$f_1 = 1$$

 $f_n = 3f_{rac{n}{2}} + n$; for $n = 2^k$, $k \ge 1$;

Define

$$g_k := f_{2^k}$$
 .

6.5 Transformation of the Recurrence

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 117/609

Example 7

$$f_1 = 1$$

 $f_n = 3f_{\frac{n}{2}} + n$; for $n = 2^k$, $k \ge 1$;

Define

$$g_k := f_{2^k}$$

Then:

$$g_0 = 1$$

EADS © Ernst Mayr, Harald Räcke 6.5 Transformation of the Recurrence

▲ □ ► ▲ ■ ► ▲ ■ ► 117/609

Example 7

$$f_1 = 1$$

 $f_n = 3f_{\frac{n}{2}} + n$; for $n = 2^k$, $k \ge 1$;

Define

$$g_k := f_{2^k}$$

Then:

$$g_0 = 1$$

 $g_k = 3g_{k-1} + 2^k, \ k \ge 1$

EADS © Ernst Mayr, Harald Räcke 6.5 Transformation of the Recurrence

◆ @ ▶ ◆ 聖 ▶ ◆ 聖 ▶ 117/609

We get

$$g_k = 3\left[g_{k-1}\right] + 2^k$$

6.5 Transformation of the Recurrence

◆聞▶◆聖▶◆聖 118/609

We get

$$g_k = 3 [g_{k-1}] + 2^k$$

= 3 [3g_{k-2} + 2^{k-1}] + 2^k

6.5 Transformation of the Recurrence

◆聞▶◆聖▶◆聖 118/609

We get

$$g_{k} = 3 [g_{k-1}] + 2^{k}$$

= 3 [3g_{k-2} + 2^{k-1}] + 2^{k}
= 3^{2} [g_{k-2}] + 32^{k-1} + 2^{k}

6.5 Transformation of the Recurrence

◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 118/609

We get

$$g_{k} = 3 [g_{k-1}] + 2^{k}$$

= 3 [3g_{k-2} + 2^{k-1}] + 2^{k}
= 3^{2} [g_{k-2}] + 32^{k-1} + 2^{k}
= 3^{2} [3g_{k-3} + 2^{k-2}] + 32^{k-1} + 2^{k}

6.5 Transformation of the Recurrence

◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 118/609

We get

$$g_{k} = 3 [g_{k-1}] + 2^{k}$$

= 3 [3g_{k-2} + 2^{k-1}] + 2^{k}
= 3^{2} [g_{k-2}] + 32^{k-1} + 2^{k}
= 3^{2} [3g_{k-3} + 2^{k-2}] + 32^{k-1} + 2^{k}
= 3^{3}g_{k-3} + 3^{2}2^{k-2} + 32^{k-1} + 2^{k}

6.5 Transformation of the Recurrence

◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 118/609

We get

$$g_{k} = 3 [g_{k-1}] + 2^{k}$$

$$= 3 [3g_{k-2} + 2^{k-1}] + 2^{k}$$

$$= 3^{2} [g_{k-2}] + 32^{k-1} + 2^{k}$$

$$= 3^{2} [3g_{k-3} + 2^{k-2}] + 32^{k-1} + 2^{k}$$

$$= 3^{3}g_{k-3} + 3^{2}2^{k-2} + 32^{k-1} + 2^{k}$$

$$= 2^{k} \cdot \sum_{i=0}^{k} \left(\frac{3}{2}\right)^{i}$$

EADS © Ernst Mayr, Harald Räcke 6.5 Transformation of the Recurrence

◆聞▶◆聖▶◆聖▶ 118/609

We get

$$g_{k} = 3 [g_{k-1}] + 2^{k}$$

$$= 3 [3g_{k-2} + 2^{k-1}] + 2^{k}$$

$$= 3^{2} [g_{k-2}] + 32^{k-1} + 2^{k}$$

$$= 3^{2} [3g_{k-3} + 2^{k-2}] + 32^{k-1} + 2^{k}$$

$$= 3^{3}g_{k-3} + 3^{2}2^{k-2} + 32^{k-1} + 2^{k}$$

$$= 2^{k} \cdot \sum_{i=0}^{k} \left(\frac{3}{2}\right)^{i}$$

$$= 2^{k} \cdot \frac{\left(\frac{3}{2}\right)^{k+1} - 1}{\frac{1}{2}}$$

6.5 Transformation of the Recurrence

◆聞▶ ◆臣▶ ◆臣▶ 118/609

We get

$$g_{k} = 3 [g_{k-1}] + 2^{k}$$

$$= 3 [3g_{k-2} + 2^{k-1}] + 2^{k}$$

$$= 3^{2} [g_{k-2}] + 32^{k-1} + 2^{k}$$

$$= 3^{2} [3g_{k-3} + 2^{k-2}] + 32^{k-1} + 2^{k}$$

$$= 3^{3}g_{k-3} + 3^{2}2^{k-2} + 32^{k-1} + 2^{k}$$

$$= 2^{k} \cdot \sum_{i=0}^{k} \left(\frac{3}{2}\right)^{i}$$

$$= 2^{k} \cdot \frac{\left(\frac{3}{2}\right)^{k+1} - 1}{\frac{1}{2}} = 3^{k+1} - 2^{k+1}$$

EADS © Ernst Mayr, Harald Räcke 6.5 Transformation of the Recurrence

◆聞▶◆臣▶◆臣▶ 118/609

Let $n = 2^k$:

$$g_k = 3^{k+1} - 2^{k+1}$$
, hence
 $f_n = 3 \cdot 3^k - 2 \cdot 2^k$

6.5 Transformation of the Recurrence

◆ @ ▶ 《 臣 ▶ 《 臣 ▶ 119/609

Let $n = 2^k$:

$$g_k = 3^{k+1} - 2^{k+1}$$
, hence
 $f_n = 3 \cdot 3^k - 2 \cdot 2^k$
 $= 3(2^{\log 3})^k - 2 \cdot 2^k$

EADS © Ernst Mayr, Harald Räcke 6.5 Transformation of the Recurrence

▲ 個 → < E → < E → 119/609

Let $n = 2^k$:

$$g_k = 3^{k+1} - 2^{k+1}, \text{ hence}$$

$$f_n = 3 \cdot 3^k - 2 \cdot 2^k$$

$$= 3(2^{\log 3})^k - 2 \cdot 2^k$$

$$= 3(2^k)^{\log 3} - 2 \cdot 2^k$$

EADS © Ernst Mayr, Harald Räcke 6.5 Transformation of the Recurrence

◆聞▶ ◆臣▶ ◆臣▶ 119/609

Let $n = 2^k$:

$$g_k = 3^{k+1} - 2^{k+1}, \text{ hence}$$

$$f_n = 3 \cdot 3^k - 2 \cdot 2^k$$

$$= 3(2^{\log 3})^k - 2 \cdot 2^k$$

$$= 3(2^k)^{\log 3} - 2 \cdot 2^k$$

$$= 3n^{\log 3} - 2n .$$

EADS © Ernst Mayr, Harald Räcke 6.5 Transformation of the Recurrence

▲ 個 → < E → < E → 119/609