Analysis

EADS

□|||||| © Ernst Mayr, Harald Räcke

How do we find *S*?

- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex *u*.
 Hence, |V_{odd}| = |Γ(V_{even})| < |V_{even}|, and all odd vertices are saturated in the current matching.

	19 Weighted Bipartite Matching	
🛛 🕒 🛛 🖉 © Ernst Mayr, Harald Räcke		576

A Fast Matching Algorithm Algorithm 53 Bimatch-Hopcroft-Karp(G) 1: $M \leftarrow \emptyset$ 2: repeat 3: let $\mathcal{P} = \{P_1, \dots, P_k\}$ be maximal set of 4: vertex-disjoint, shortest augmenting path w.r.t. M. 5: $M \leftarrow M \oplus (P_1 \cup \dots \cup P_k)$ 6: until $\mathcal{P} = \emptyset$ 7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

20 The Hopcroft-Karp Algorithm

Analysis

- ► The current matching does not have any edges from V_{odd} to outside of L \ V_{even} (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd}. After at most n reweights we can do an augmentation.
- ► A reweighting can be trivially performed in time O(n²) (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

EADS © Ernst Mayr, Harald Räcke	19 Weig
🛛 🗌 🖉 Ernst Mayr, Harald Räcke	

19 Weighted Bipartite Matching

Analysis

 Π

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- The connected components of *G* are cycles and paths.
- ► The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

578

Analysis

- Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{\tiny def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 5

The set $A \stackrel{\text{\tiny def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

Analysis

Lemma 6

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- ► If P does not intersect any of the P₁,..., P_k, this follows from the maximality of the set {P₁,..., P_k}.
- Otherwise, at least one edge from P coincides with an edge from paths {P₁,..., P_k}.
- This edge is not contained in *A*.
- Hence, $|A| \le k\ell + |P| 1$.
- ► The lower bound on |A| gives $(k + 1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

```
EADS 20 TI
© Ernst Mayr, Harald Räcke
```

Analysis

Proof.

- ► The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ► Hence, the set contains at least k + 1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

EADS © Ernst Mayr, Harald Räcke

20 The Hopcroft-Karp Algorithm

581

Analysis

580

582

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Analysis

Lemma 7

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.

- ▶ After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- Hence, there can be at most $|V|/(\sqrt{|V|} + 1) \le \sqrt{|V|}$ additional augmentations.

П	[nn]	EADS © Ernst Mayr, Harald F	
	100	© Ernst Mayr, Harald F	₹äcke

20 The Hopcroft-Karp Algorithm

584

Analysis

- Then a maximal set of shortest path from the leftmost layer of the tree construction to nodes in F needs to be computed.
- Any such path must visit the layers of the BFS-tree from left to right.
- To go from an odd layer to an even layer it must use a matching edge.
- To go from an even layer to an odd layer edge it can use edges in the BFS-tree or edges that have been ignored during BFS-tree construction.
- We direct all edges btw. an even node in some layer ℓ to an odd node in layer $\ell + 1$ from left to right.
- A DFS search in the resulting graph gives us a maximal set of vertex disjoint path from left to right in the resulting graph.

Analysis

Lemma 8

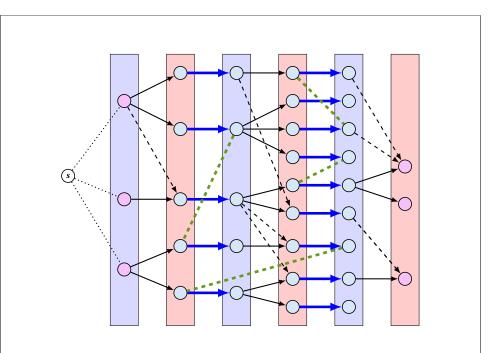
One phase of the Hopcroft-Karp algorithm can be implemented in time $\mathcal{O}(m)$.

• Do a breadth first search starting at all free vertices in the left side *L*.

(alternatively add a super-startnode; connect it to all free vertices in L and start breadth first search from there)

The search stops when reaching a free vertex. However, the current level of the BFS tree is still finished in order to find a set *F* of free vertices (on the right side) that can be reached via shortest augmenting paths.

EADS © Ernst Mayr, Harald Räcke	20 The Hopcroft-Karp Algorithm	
		585



586