A Fast Matching Algorithm

```
Algorithm 53 Bimatch-Hopcroft-Karp \((G)\)
    1: \(M \leftarrow \emptyset\)
    2: repeat
    3: \(\quad\) let \(\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}\) be maximal set of
    4: \(\quad\) vertex-disjoint, shortest augmenting path w.r.t. \(M\).
    5: \(\quad M \leftarrow M \oplus\left(P_{1} \cup \cdots \cup P_{k}\right)\)
    6: until \(\mathcal{P}=\emptyset\)
    7: return \(M\)
```

We call one iteration of the repeat-loop a phase of the algorithm.

Analysis

Lemma 4

Given a matching M and a maximal matching M^{*} there exist $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph $G=\left(V, M \oplus M^{*}\right)$, and mark edges in this graph blue if they are in M and red if they are in M^{*}.
- The connected components of G are cycles and paths.
- The graph contains $k \stackrel{\text { def }}{=}\left|M^{*}\right|-|M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

Analysis

- Let P_{1}, \ldots, P_{k} be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell=\left|P_{i}\right|$).
- $M^{\prime} \stackrel{\text { def }}{=} M \oplus\left(P_{1} \cup \cdots \cup P_{k}\right)=M \oplus P_{1} \oplus \cdots \oplus P_{k}$.
- Let P be an augmenting path in M^{\prime}.

Lemma 5

The set $A \stackrel{\text { def }}{=} M \oplus\left(M^{\prime} \oplus P\right)=\left(P_{1} \cup \cdots \cup P_{k}\right) \oplus P$ contains at least $(k+1) \ell$ edges.

Analysis

Proof.

- The set describes exactly the symmetric difference between matchings M and $M^{\prime} \oplus P$.
- Hence, the set contains at least $k+1$ vertex-disjoint augmenting paths w.r.t. M as $\left|M^{\prime}\right|=|M|+k+1$.
- Each of these paths is of length at least ℓ.

Analysis

Lemma 6

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P_{1}, \ldots, P_{k}, this follows from the maximality of the set $\left\{P_{1}, \ldots, P_{k}\right\}$.
- Otherwise, at least one edge from P coincides with an edge from paths $\left\{P_{1}, \ldots, P_{k}\right\}$.
- This edge is not contained in A.
- Hence, $|A| \leq k \ell+|P|-1$.
- The lower bound on $|A|$ gives $(k+1) \ell \leq|A| \leq k \ell+|P|-1$, and hence $|P| \geq \ell+1$.

Analysis

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M|+\frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^{*} contains
$\left|M^{*}\right|-|M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell+1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Analysis

Lemma 7
The Hopcroft-Karp algorithm requires at most $2 \sqrt{|V|}$ phases.

Proof.

- After iteration $\lfloor\sqrt{|V|}\rfloor$ the length of a shortest augmenting path must be at least $\lfloor\sqrt{|V|}\rfloor+1 \geq \sqrt{|V|}$.
- Hence, there can be at most $|V| /(\sqrt{|V|}+1) \leq \sqrt{|V|}$ additional augmentations.

Analysis

Lemma 8

One phase of the Hopcroft-Karp algorithm can be implemented in time $\mathcal{O}(m)$.

- Do a breadth first search starting at all free vertices in the left side L.
(alternatively add a super-startnode; connect it to all free vertices in L and start breadth first search from there)
- The search stops when reaching a free vertex. However, the current level of the BFS tree is still finished in order to find a set F of free vertices (on the right side) that can be reached via shortest augmenting paths.

Analysis

- Then a maximal set of shortest path from the leftmost layer of the tree construction to nodes in F needs to be computed.
- Any such path must visit the layers of the BFS-tree from left to right.
- To go from an odd layer to an even layer it must use a matching edge.
- To go from an even layer to an odd layer edge it can use edges in the BFS-tree or edges that have been ignored during BFS-tree construction.
- We direct all edges btw. an even node in some layer ℓ to an odd node in layer $\ell+1$ from left to right.
- A DFS search in the resulting graph gives us a maximal set of vertex disjoint path from left to right in the resulting graph.

