7.3 AVL-Trees

Definition 1

AVL-trees are binary search trees that fulfill the following balance condition. For every node \boldsymbol{v}

 $|\text{height}(\text{left sub-tree}(v)) - \text{height}(\text{right sub-tree}(v))| \le 1$.

Lemma 2

An AVL-tree of height h contains at least $F_{h+2} - 1$ and at most $2^{h} - 1$ internal nodes, where F_{n} is the n-th Fibonacci number ($F_{0} = 0, F_{1} = 1$), and the height is the maximal number of edges from the root to an (empty) dummy leaf.

AVL trees

Proof.

The upper bound is clear, as a binary tree of height h can only contain h-1

$$\sum_{j=0}^{h-1} 2^j = 2^h - 1$$

internal nodes.

AVL trees

Proof (cont.)

Induction (base cases):

- 1. an AVL-tree of height h = 1 contains at least one internal node, $1 \ge F_3 1 = 2 1 = 1$.
- **2.** an AVL tree of height h = 2 contains at least two internal nodes, $2 \ge F_4 1 = 3 1 = 2$

Induction step:

An AVL-tree of height $h \ge 2$ of minimal size has a root with sub-trees of height h - 1 and h - 2, respectively. Both, sub-trees have minmal node number.

Let

 $g_h \coloneqq 1 + \text{minimal size of AVL-tree of height } h$.

Then

$$g_1 = 2 = F_3$$

$$g_2 = 3 \qquad \qquad = F_4$$

 $g_h - 1 = 1 + g_{h-1} - 1 + g_{h-2} - 1$, hence $g_h = g_{h-1} + g_{h-2} = F_{h+2}$

7.3 AVL-Trees

An AVL-tree of height h contains at least $F_{h+2} - 1$ internal nodes. Since

$$n+1 \ge F_{h+2} = \Omega\left(\left(\frac{1+\sqrt{5}}{2}\right)^h\right)$$
,

we get

$$n \ge \Omega\left(\left(rac{1+\sqrt{5}}{2}
ight)^{h}
ight)$$
 ,

and, hence, $h = O(\log n)$.

7.3 AVL-Trees

We need to maintain the balance condition through rotations.

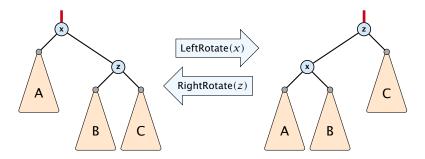
For this we store in every internal tree-node v the balance of the node. Let v denote a tree node with left child c_{ℓ} and right child c_r .

$$balance[v] := height(T_{c_{\ell}}) - height(T_{c_{r}})$$
,

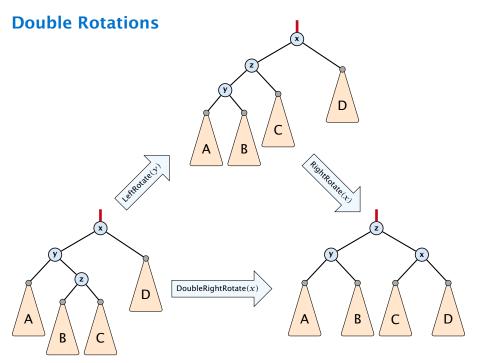
where $T_{c_{\ell}}$ and $T_{c_{r}}$, are the sub-trees rooted at c_{ℓ} and c_{r} , respectively.

Rotations

The properties will be maintained through rotations:

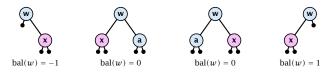


7.3 AVL-Trees



Note that before the insertion w is right above the leaf level, i.e., x replaces a child of w that was a dummy leaf.

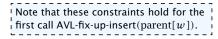
- Insert like in a binary search tree.
- Let *w* denote the parent of the newly inserted node *x*.
- One of the following cases holds:



- If bal[w] ≠ 0, T_w has changed height; the balance-constraint may be violated at ancestors of w.
- Call AVL-fix-up-insert(parent[w]) to restore the balance-condition.

Invariant at the beginning of AVL-fix-up-insert(v):

- 1. The balance constraints hold at all descendants of v.
- **2.** A node has been inserted into T_c , where c is either the right or left child of v.
- **3.** *T_c* has increased its height by one (otw. we would already have aborted the fix-up procedure).
- 4. The balance at node c fulfills balance $[c] \in \{-1, 1\}$. This holds because if the balance of c is 0, then T_c did not change its height, and the whole procedure would have been aborted in the previous step.

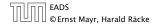


Algorithm 11 AVL-fix-up-insert(v)

- 1: **if** balance[v] \in {-2, 2} **then** DoRotationInsert(v);
- 2: if balance[v] \in {0} return;
- 3: AVL-fix-up-insert(parent[v]);

We will show that the above procedure is correct, and that it will do at most one rotation.

Algorithm 12 DoRotationInsert(v)		
1:	if balance[v] = -2 then // insert in right sub-tree	
2:	if balance[right[v]] = -1 then	
3:	LeftRotate(v);	
4:	else	
5:	DoubleLeftRotate(v);	
6:	else // insert in left sub-tree	
7:	if $balance[left[v]] = 1$ then	
8:	RightRotate(v);	
9:	else	
10:	DoubleRightRotate(v);	



It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

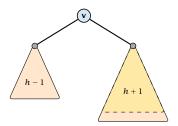
We have to show that after doing one rotation **all** balance constraints are fulfilled.

We show that after doing a rotation at v:

- v fulfills balance condition.
- All children of v still fulfill the balance condition.
- The height of T_v is the same as before the insert-operation took place.

We only look at the case where the insert happened into the right sub-tree of v. The other case is symmetric.

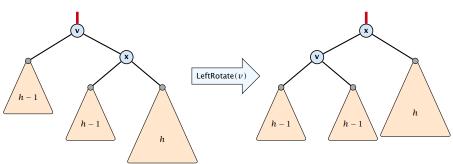
We have the following situation:



The right sub-tree of v has increased its height which results in a balance of -2 at v.

Before the insertion the height of T_v was h + 1.

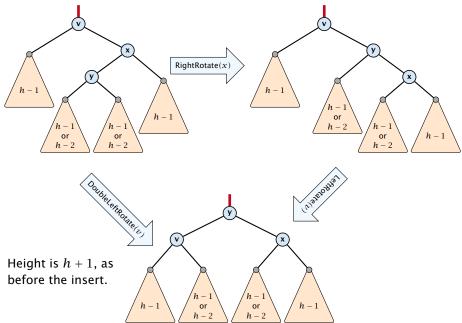
Case 1: balance[right[v]] = -1



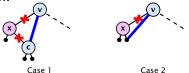
We do a left rotation at v

Now, the subtree has height h + 1 as before the insertion. Hence, we do not need to continue.

Case 2: balance[right[v]] = 1



- Delete like in a binary search tree.
- Let v denote the parent of the node that has been spliced out.
- The balance-constraint may be violated at v, or at ancestors of v, as a sub-tree of a child of v has reduced its height.
- Initially, the node c—the new root in the sub-tree that has changed—is either a dummy leaf or a node with two dummy leafs as children.

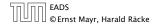


In both cases bal[c] = 0.

• Call AVL-fix-up-delete(v) to restore the balance-condition.

Invariant at the beginning AVL-fix-up-delete(v):

- 1. The balance constraints holds at all descendants of v.
- **2.** A node has been deleted from T_c , where c is either the right or left child of v.
- **3.** T_c has decreased its height by one.
- 4. The balance at the node c fulfills balance[c] = 0. This holds because if the balance of c is in $\{-1, 1\}$, then T_c did not change its height, and the whole procedure would have been aborted in the previous step.



Algorithm 13 AVL-fix-up-delete(v)

- 1: if balance[v] $\in \{-2, 2\}$ then DoRotationDelete(v);
- 2: if balance[v] $\in \{-1, 1\}$ return; 3: AVL-fix-up-delete(parent[v]);

We will show that the above procedure is correct. However, for the case of a delete there may be a logarithmic number of rotations.

Alg	gorithm 14 DoRotationDelete(v)
1:	if balance[v] = -2 then // deletion in left sub-tree
2:	if balance[right[v]] $\in \{0, -1\}$ then
3:	LeftRotate(<i>v</i>);
4:	else
5:	DoubleLeftRotate(v);
6:	else // deletion in right sub-tree
7:	if balance[left[v]] = {0, 1} then
8:	RightRotate(v);
9:	else
10:	DoubleRightRotate(v);

Note that the case distinction on the second level (bal[right[v]] and bal[left[v]]) is not done w.r.t. the child c for which the subtree T_c has changed. This is different to AVL-fix-up-insert.

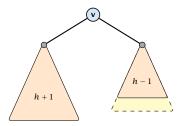
It is clear that the invariant for the fix-up routine hold as long as no rotations have been done.

We show that after doing a rotation at v:

- v fulfills the balance condition.
- All children of v still fulfill the balance condition.
- If now balance[v] ∈ {−1,1} we can stop as the height of T_v is the same as before the deletion.

We only look at the case where the deleted node was in the right sub-tree of v. The other case is symmetric.

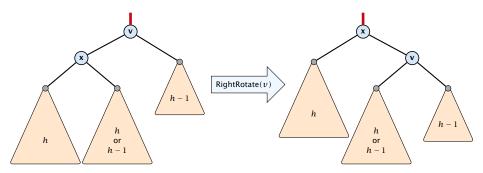
We have the following situation:



The right sub-tree of v has decreased its height which results in a balance of 2 at v.

Before the deletion the height of T_v was h + 2.

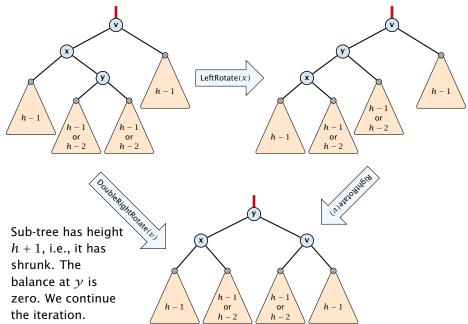
Case 1: balance[left[v]] $\in \{0, 1\}$



If the middle subtree has height h the whole tree has height h + 2 as before the deletion. The iteration stops as the balance at the root is non-zero.

If the middle subtree has height h - 1 the whole tree has decreased its height from h + 2 to h + 1. We do continue the fix-up procedure as the balance at the root is zero.

Case 2: balance[left[v]] = -1



AVL Trees

Bibliography

- [OW02] Thomas Ottmann, Peter Widmayer: *Algorithmen und Datenstrukturen*, Spektrum, 4th edition, 2002
- [GT98] Michael T. Goodrich, Roberto Tamassia Data Structures and Algorithms in JAVA, John Wiley, 1998

Chapter 5.2.1 of [OW02] contains a detailed description of AVL-trees, albeit only in German.

AVL-trees are covered in [GT98] in Chapter 7.4. However, the coverage is a lot shorter than in [OW02].

