How to choose augmenting paths?

- ▶ We need to find paths efficiently.
- ▶ We want to guarantee a small number of iterations.

Several possibilities:

- ▶ Choose path with maximum bottleneck capacity.
- ▶ Choose path with sufficiently large bottleneck capacity.
- ► Choose the shortest augmenting path.

EADS © Ernst Mayr, Harald Räcke

466

Capacity Scaling

5:

```
Algorithm 45 maxflow(G, s, t, c)
1: foreach e \in E do f_e \leftarrow 0;
```

2: $\Delta \leftarrow 2^{\lceil \log_2 C \rceil}$

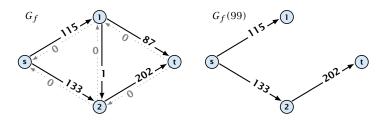
3: while $\Delta \geq 1$ do

 $G_f(\Delta) \leftarrow \Delta$ -residual graph

while there is augmenting path P in $G_f(\Delta)$ **do**

 $f \leftarrow \operatorname{augment}(f, c, P)$ 6:

 $update(G_f(\Delta))$


 $\Delta \leftarrow \Delta/2$

9: return f

Capacity Scaling

Intuition:

- ► Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .

EADS © Ernst Mayr, Harald Räcke

12.3 Capacity Scaling

465

Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.

EADS ∐]∐∐ © Ernst Mayr, Harald Räcke 12.3 Capacity Scaling

пп EADS © Ernst Mayr, Harald Räcke 12.3 Capacity Scaling

Capacity Scaling

Lemma 1

There are $\lceil \log C \rceil$ *iterations over* Δ .

Proof: obvious.

Lemma 2

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + m\Delta$.

Proof: less obvious, but simple:

- ▶ There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
- ▶ In G_f this cut can have capacity at most $m\Delta$.
- ▶ This gives me an upper bound on the flow that I can still add.

12.3 Capacity Scaling

468

Capacity Scaling

Lemma 3

There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- $\operatorname{val}(f^*) \le \operatorname{val}(f) + 2m\Delta$
- ▶ Each augmentation increases flow by Δ .

Theorem 4

We need $O(m \log C)$ augmentations. The algorithm can be implemented in time $\mathcal{O}(m^2 \log C)$.

EADS © Ernst Mayr, Harald Räcke

12.3 Capacity Scaling