
Preflows

Definition 1

An (s, t)-preflow is a function f : E , R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}∑
e∈out(v)

f(e)≤
∑

e∈into(v)
f(e) .

EADS

© Ernst Mayr, Harald Räcke 487

Preflows

Example 2

s

2

3

4

5

6

7

t

10|10

3|5

11|15

4|4

0|9

0|15

0|4

0|8

11|30

1|6

0|15

0|15

0|10

0|10

0|10

A node that has
∑
e∈out(v) f(e)<

∑
e∈into(v) f(e) is called an

active node.

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 488

Preflows

Definition:

A labelling is a function ` : V → N. It is valid for preflow f if

ñ `(u) ≤ `(v)+ 1 for all edges in the residual graph Gf (only

non-zero capacity edges!!!)

ñ `(s) = n
ñ `(t) = 0

Intuition:

The labelling can be viewed as a height function. Whenever the

height from node u to node v decreases by more than 1 (i.e., it

goes very steep downhill from u to v), the corresponding edge

must be saturated.

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 489

Preflows

G

Gf

s

2

3

4

5 t

s

2

3

4

5 t

6 0

0 0

0 0

6 0

20|0

10|0

0|0

0|0

20|20 0|8

0|8

0|2

0|910|10

0|6 0|5

0|4

0

20
8

0

8
0

2

0

9
0

0
10

6

0 5
0

4
0

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 490

Preflows

Lemma 3

A preflow that has a valid labelling saturates a cut.

Proof:

ñ There are n nodes but n+ 1 different labels from 0, . . . , n.

ñ There must exist a label d ∈ {0, . . . , n} such that none of

the nodes carries this label.

ñ Let A = {v ∈ V | `(v) > d} and B = {v ∈ V | `(v) < d}.
ñ We have s ∈ A and t ∈ B and there is no edge from A to B

in the residual graph Gf ; this means that (A, B) is a

saturated cut.

Lemma 4

A flow that has a valid labelling is a maximum flow.

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 491

Push Relabel Algorithms

Idea:

ñ start with some preflow and some valid labelling

ñ successively change the preflow while maintaining a valid

labelling

ñ stop when you have a flow (i.e., no more active nodes)

Note that this is somewhat dual to an augmenting path algorithm. The former maintains the
property that it has a feasible flow. It successively changes this flow until it saturates some cut
in which case we conclude that the flow is maximum. A preflow push algorithm maintains the
property that it has a saturated cut. The preflow is changed iteratively until it fulfills conservation
constraints in which case we can conclude that we have a maximum flow.

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 492

Changing a Preflow

An arc (u,v) with cf (u,v) > 0 in the residual graph is

admissable if `(u) = `(v)+ 1 (i.e., it goes downwards w.r.t.

labelling `).

The push operation

Consider an active node u with excess flow

f(u) =∑e∈into(u) f(e)−
∑
e∈out(u) f(e) and suppose e = (u,v)

is an admissable arc with residual capacity cf (e).

We can send flow min{cf (e), f (u)} along e and obtain a new

preflow. The old labelling is still valid (!!!).

ñ saturating push: min{f(u), cf (e)} = cf (e)
the arc e is deleted from the residual graph

ñ non-saturating push: min{f(u), cf (e)} = f(u)
the node u becomes inactive

Push Relabel Algorithms

The relabel operation

Consider an active node u that does not have an outgoing

admissable arc.

Increasing the label of u by 1 results in a valid labelling.

ñ Edges (w,u) incoming to u still fulfill their constraint

`(w) ≤ `(u)+ 1.

ñ An outgoing edge (u,w) had `(u) < `(w)+ 1 before since

it was not admissable. Now: `(u) ≤ `(w)+ 1.

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 494

Push Relabel Algorithms

Intuition:

We want to send flow downwards, since the source has a

height/label of n and the target a height/label of 0. If we see an

active node u with an admissible arc we push the flow at u
towards the other end-point that has a lower height/label. If we

do not have an admissible arc but excess flow into u it should

roughly mean that the level/height/label of u should rise. (If we

consider the flow to be water than this would be natural).

Note that the above intuition is very incorrect as the labels are

integral, i.e., they cannot really be seen as the height of a node.

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 495

Reminder

ñ In a preflow nodes may not fulfill conserveration constraints

but a node may have more incoming flow than outgoing

flow.

ñ Such a node is called active.

ñ A labelling is valid if for every edge (u,v) in the residual

graph `(u) ≤ `(v)+ 1.

ñ An arc (u,v) in residual graph is admissable if

`(u) = `(v)+ 1.

ñ A saturation push along e pushes an amount of c(e) flow

along the edge, thereby saturating the edge (and making it

dissappear from the residual graph).

ñ A non-saturating push along e = (u,v) pushes a flow of

f(u), where f(u) is the excess flow of u. This makes u
inactive.

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 496

Push Relabel Algorithms

Algorithm 46 maxflow(G, s, t, c)
1: find initial preflow f
2: while there is active node u do

3: if there is admiss. arc e out of u then

4: push(G, e, f , c)
5: else

6: relabel(u)
7: return f

In the following example we always stick to the same active node

u until it becomes inactive but this is not required.

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 497

Preflow Push Algorithm

Animation for push relabel

algorithms is only available in the

lecture version of the slides.

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 498

Analysis

Lemma 5

An active node has a path to s in the residual graph.

Proof.

ñ Let A denote the set of nodes that can reach s, and let B
denote the remaining nodes. Note that s ∈ A.

ñ In the following we show that a node b ∈ B has excess flow

f(b) = 0 which gives the lemma.

ñ In the residual graph there are no edges into A, and, hence,

no edges leaving A/entering B can carry any flow.

ñ Let f(B) =∑v∈B f(v) be the excess flow of all nodes in B.

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 499

Let f : E → R+0 be a preflow. We introduce the notation

f(x,y) =
{

0 (x,y) ∉ E
f((x,y)) (x,y) ∈ E

We have

f(B) =
∑
b∈B

f(b)

=
∑
b∈B

(∑
v∈V

f(v, b)−
∑
v∈V

f(b,v)
)

=
∑
b∈B

(∑
v∈A

f(v, b)+
∑
v∈B

f(v, b)−
∑
v∈A

f(b,v)−
∑
v∈B

f(b,v)
)

=
∑
b∈B

∑
v∈A

f(v, b)−
∑
b∈B

∑
v∈A

f(b,v)+
∑
b∈B

∑
v∈B

f(v, b)−
∑
b∈B

∑
v∈B

f(b,v)

≤ 0

Hence, the excess flow f(b) must be 0 for every node b ∈ B.

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 500

Analysis

Lemma 6

The label of a node cannot become larger than 2n− 1.

Proof.

ñ When increasing the label at a node u there exists a path

from u to s of length at most n− 1. Along each edge of the

path the height/label can at most drop by 1, and the label

of the source is n.

Lemma 7

There are only O(n2) relabel operations.

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 501

Analysis

Lemma 8

The number of saturating pushes performed is at most O(mn).

Proof.

ñ Suppose that we just made a saturating push along (u,v).
ñ Hence, the edge (u,v) is deleted from the residual graph.

ñ For the edge to appear again, a push from v to u is

required.

ñ Currently, `(u) = `(v)+ 1, as we only make pushes along

admissable edges.

ñ For a push from v to u the edge (v,u) must become

admissable. The label of v must increase by at least 2.

ñ Since the label of v is at most 2n− 1, there are at most n
pushes along (u,v).

Lemma 9

The number of non-saturating pushes performed is at most

O(n2m).

Proof.

ñ Define a potential function Φ(f) =∑active nodesv `(v)
ñ A saturating push increases Φ by ≤ 2n (when the target

node becomes active it may contribute at most 2n to the

sum).

ñ A relabel increases Φ by at most 1.

ñ A non-saturating push decreases Φ by at least 1 as the node

that is pushed from becomes inactive and has a label that is

strictly larger than the target.

ñ Hence,

#non-saturating_pushes ≤ #relabels+ 2n · #saturating_pushes

≤ O(n2m) .

Analysis

Theorem 10

There is an implementation of the generic push relabel

algorithm with running time O(n2m).

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 504

Analysis

Proof:

For every node maintain a list of admissable edges starting at

that node. Further maintain a list of active nodes.

A push along an edge (u,v) can be performed in constant time

ñ check whether edge (v,u) needs to be added to Gf
ñ check whether (u,v) needs to be deleted (saturating push)

ñ check whether u becomes inactive and has to be deleted

from the set of active nodes

A relabel at a node u can be performed in time O(n)
ñ check for all outgoing edges if they become admissable

ñ check for all incoming edges if they become non-admissable

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 505

Analysis
For special variants of push relabel algorithms we organize the

neighbours of a node into a linked list (possible neighbours in

the residual graph Gf). Then we use the discharge-operation:

Algorithm 47 discharge(u)
1: while u is active do

2: v ← u.current-neighbour

3: if v = null then

4: relabel(u)
5: u.current-neighbour ← u.neighbour-list-head

6: else

7: if (u,v) admissable then push(u,v)
8: else u.current-neighbour ← v.next-in-list

Note that u.current-neighbour is a global variable. It is only

changed within the discharge routine, but keeps its value

between consecutive calls to discharge.

Lemma 11

If v = null in Line 3, then there is no

outgoing admissable edge from u.

Proof.

ñ While pushing from u the current-neighbour pointer is only

advanced if the current edge is not admissable.

ñ The only thing that could make the edge admissable again

would be a relabel at u.

ñ If we reach the end of the list (v = null) all edges are not

admissable.

This shows that discharge(u) is correct, and that we can

perform a relabel in line 4.

In order for e to become admissable the
other end-point say v has to push flow
to u (so that the edge (u,v) re-appears
in the residual graph). For this the label
of v needs to be larger than the label of
u. Then in order to make (u,v) admiss-
able the label of u has to increase.

EADS 14.1 Generic Push Relabel

© Ernst Mayr, Harald Räcke 507

	Generic Push Relabel

