6.1 Guessing+Induction

First we need to get rid of the \mathcal{O}-notation in our recurrence:

$$
T(n) \leq \begin{cases}2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n & n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Assume that instead we had

$$
T(n) \leq \begin{cases}2 T\left(\frac{n}{2}\right)+c n & n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

6.1 Guessing+Induction

Suppose we guess $T(n) \leq d n \log n$ for a constant d. Then

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \leq 2\left(d \frac{n}{2} \log \frac{n}{2}\right)+c n \\
& =d n(\log n-1)+c n \\
& =d n \log n+(c-d) n \\
& \leq d n \log n
\end{aligned}
$$

if we choose $d \geq c$.

Formally one would make an induction proof, where the above is the induction step. The base case is usually trivial.

6.1 Guessing+Induction

Guess: $T(n) \leq d n \log n$.

$$
T(n) \leq \begin{cases}2 T\left(\frac{n}{2}\right)+c n & n \geq 16 \\ b & \text { otw }\end{cases}
$$

Proof. (by induction)

- base case $(2 \leq n<16)$: true if we choose $d \geq b$.
- induction step $2 \ldots n-1 \rightarrow n$:

Suppose statem. is true for $n^{\prime} \in\{2, \ldots, n-1\}$, and $n \geq 16$. We prove it for n :

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \leq 2\left(d \frac{n}{2} \log \frac{n}{2}\right)+c n \\
& =d n(\log n-1)+c n \\
& =d n \log n+(c-d) n \\
& \leq d n \log n
\end{aligned}
$$

Hence, statement is true if we choose $d \geq c$.

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?
If we do not do this we instead consider the following recurrence:

$$
T(n) \leq \begin{cases}2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n & n \geq 16 \\ b & \text { otherwise }\end{cases}
$$

Note that we can do this as for constant-sized inputs the running time is always some constant (b in the above case).

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
\begin{aligned}
T(n) & \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n \\
& \leq 2\left(d\left\lceil\frac{n}{2}\right\rceil \log \left\lceil\frac{n}{2}\right\rceil\right)+c n \\
\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2}+1 & \leq 2(d(n / 2+1) \log (n / 2+1))+c n \\
\frac{n}{2}+1 \leq \frac{9}{16} n & \leq d n \log \left(\frac{9}{16} n\right)+2 d \log n+c n
\end{aligned}
$$

$$
\log \frac{9}{16} n=\log n+(\log 9-4)=d n \log n+(\log 9-4) d n+2 d \log n+c n
$$

$$
\begin{aligned}
\log n \leq \frac{n}{4} & \leq d n \log n+(\log 9-3.5) d n+c n \\
& \leq d n \log n-0.33 d n+c n \\
& \leq d n \log n
\end{aligned}
$$

for a suitable choice of d.

