14.3 Highest label

Algorithm 50 highest-label(G, s, t)

1: initialize preflow

- 2: foreach $u \in V \setminus \{s, t\}$ do
- u.current-neighbour $\leftarrow u.neighbour$ -list-head 3.

4: while \exists active node u do

- select active node u with highest label 5:
- discharge(u)6:

516

14.3 Highest label

UUUU © Ernst Mayr, Harald Räcke

EADS

Since a discharge-operation is terminated by a non-saturating push this gives an upper bound of $\mathcal{O}(n^3)$ on the number of discharge-operations.

The cost for relabels and saturating pushes can be estimated in exactly the same way as in the case of the generic push-relabel algorithm.

Ouestion:

How do we find the next node for a discharge operation?

14.3 Highest label

Lemma 1

When using highest label the number of non-saturating pushes is only $\mathcal{O}(n^3)$.

A push from a node on level ℓ can only "activate" nodes on levels strictly less than ℓ .

This means, after a non-saturating push from u a relabel is required to make u active again.

Hence, after *n* non-saturating pushes without an intermediate relabel there are no active nodes left.

Therefore, the number of non-saturating pushes is at most $n(\#relabels+1) = \mathcal{O}(n^3).$

14.3 Highest label

nn EADS

© Ernst Mayr, Harald Räcke

Maintain lists L_i , $i \in \{0, ..., 2n\}$, where list L_i contains active nodes with label *i* (maintaining these lists induces only constant additional cost for every push-operation and for every relabel-operation).

After a discharge operation terminated for a node u with label k, traverse the lists $L_k, L_{k-1}, \ldots, L_0$, (in that order) until you find a non-empty list.

Unless the last (non-saturating) push was to s or t the list k-1must be non-empty (i.e., the search takes constant time).

14.3 Highest label

Hence, the total time required for searching for active nodes is at most

 $\mathcal{O}(n^3) + n(\# non-saturating-pushes-to-s-or-t)$

Lemma 2

The number of non-saturating pushes to s or t is at most $\mathcal{O}(n^2)$.

With this lemma we get

Theorem 3

The push-relabel algorithm with the rule highest-label takes time $\mathcal{O}(n^3)$.

	14.3 Highest label	
🛛 💾 🛛 🖉 © Ernst Mayr, Harald Räcke		520

14.3 Highest label

5

Proof of the Lemma.

- We only show that the number of pushes to the source is at most $\mathcal{O}(n^2)$. A similar argument holds for the target.
- After a node v (which must have ℓ(v) = n + 1) made a non-saturating push to the source there needs to be another node whose label is increased from ≤ n + 1 to n + 2 before v can become active again.
- This happens for every push that v makes to the source. Since, every node can pass the threshold n + 2 at most once, v can make at most n pushes to the source.
- ► As this holds for every node the total number of pushes to the source is at most O(n²).

EADS © Ernst Mayr, Harald Räcke	14.3 Highest label	
□ 🛄 🛯 🖉 © Ernst Mayr, Harald Räcke		521

