Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing $x-y$ it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- This is less than $M-w_{x}$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.
- Hence, team z is not eliminated.

Project Selection

The prerequisite graph:

- $\{x, a, z\}$ is a feasible subset.
- $\{x, a\}$ is infeasible.

Project Selection

Project selection problem:

- Set P of possible projects. Project v has an associated profit p_{v} (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- A subset A of projects is feasible if the prerequisites of every project in A also belong to A.

Goal: Find a feasible set of projects that maximizes the profit.
13.3 Project Selection

Project Selection

Mincut formulation:

- Edges in the prerequisite graph get infinite capacity.
- Add edge (s, v) with capacity p_{v} for nodes v with positive profit.
- Create edge (v, t) with capacity $-p_{v}$ for nodes v with negative profit.

Theorem 2
A is a mincut if $A \backslash\{s\}$ is the optimal set of projects.

Proof.

- A is feasible because of capacity infinity edges.
- $\operatorname{cap}(A, V \backslash A)=$ \qquad ' the capacity of the cut - $(A, V \backslash A)$ corresponds to maximizing profits of projects in A
$p_{v}+$ \qquad $\left(-p_{v}\right)$
\square

