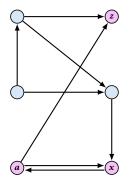
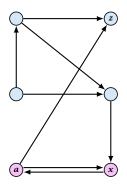
Project Selection

Project selection problem:


- Set P of possible projects. Project v has an associated profit p_v (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- ▶ Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- ▶ A subset *A* of projects is feasible if the prerequisites of every project in *A* also belong to *A*.


Goal: Find a feasible set of projects that maximizes the profit.

Project Selection

The prerequisite graph:

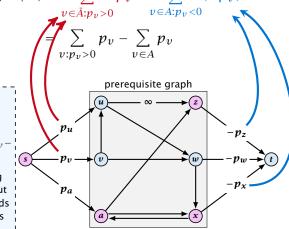
- $\{x, a, z\}$ is a feasible subset.
- $\{x, a\}$ is infeasible.



Project Selection

Mincut formulation:

- Edges in the prerequisite graph get infinite capacity.
- Add edge (s, v) with capacity p_v for nodes v with positive profit.
- Create edge (v,t) with capacity $-p_v$ for nodes v with negative profit.



Theorem 2

A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

Proof.

- A is feasible because of capacity infinity edges.

define $p_s := 0$. The step follows by adding $\sum_{v \in A: p_v > 0} p_v - \sum_{v \in A: p_v > 0} p_v = 0$. Note that minimizing

For the formula we

the capacity of the cut $(A, V \setminus A)$ corresponds to maximizing profits of projects in A.