4.3 Divide & Conquer — Merging

$$A = (a_1, \dots, a_n); B = (b_1, \dots, b_n);$$

log n integral; $k := n/\log n$ integral;

Algorithm 8 GenerateSubproblems

- 1: $j_0 \leftarrow 0$
- 2: $j_k \leftarrow n$
- 3: for $1 \le i \le k-1$ pardo
- $j_i \leftarrow \operatorname{rank}(b_{i\log n}:A)$
- 5: for $0 \le i \le k-1$ pardo
- $B_i \leftarrow (b_{i\log n+1}, \dots, b_{(i+1)\log n})$
- $A_i \leftarrow (a_{j_i+1}, \ldots, a_{j_{i+1}})$

If C_i is the merging of A_i and B_i then the sequence $C_0 \dots C_{k-1}$ is a sorted sequence.

4.3 Divide & Conquer — Merging

53

55

4.4 Maximum Computation

Lemma 4

On a CRCW PRAM the maximum of n numbers can be computed in time O(1) with n^2 processors.

proof on board...

4.3 Divide & Conquer — Merging

We can generate the subproblems in time $O(\log n)$ and work $\mathcal{O}(n)$.

Note that in a sub-problem B_i has length $\log n$.

If we run the algorithm again for every subproblem, (where A_i takes the role of B) we can in time $\mathcal{O}(\log \log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_i and B_i have both length at most log n.

Such a subproblem can be solved by a single processor in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(|A_i| + |B_i|)$.

Parallelizing the last step gives total work O(n) and time $\mathcal{O}(\log n)$.

the resulting algorithm is work optimal

4.3 Divide & Conquer — Merging

4.4 Maximum Computation

Lemma 5

On a CRCW PRAM the maximum of n numbers can be computed in time $O(\log \log n)$ with n processors and work $O(n \log \log n)$.

proof on board...

4.4 Maximum Computation

Lemma 6

On a CRCW PRAM the maximum of n numbers can be computed in time $O(\log \log n)$ with n processors and work O(n).

proof on board...

PA © Harald Räcke

4.4 Maximum Computation

57

4.5 Inserting into a (2, 3)-tree

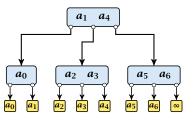
- 1. determine for every x_i the leaf element before which it has to be inserted
 - time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM
 - all x_i 's that have to be inserted before the same element form a chain
- 2. determine the largest/smallest/middle element of every chain
 - time: $\mathcal{O}(1)$; work: $\mathcal{O}(k)$;
- 3. insert the middle element of every chain compute new chains time: $O(\log n)$; work: $O(k_i \log n)$; k_i = #inserted elements
- 4. repeat Step 3 for logarithmically many rounds
- time: $O(\log n \log k)$; work: $O(k \log n)$;

(computing new chains is constant time)

4.5 Inserting into a (2, 3)-tree

Given a (2,3)-tree with n elements, and a sequence $x_0 < x_1 < x_2 < \cdots < x_k$ of elements. We want to insert elements x_1, \ldots, x_k into the tree $(k \ll n)$.

time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$

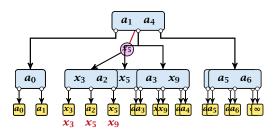


PA © Harald Räcke

4.5 Inserting into a (2,3)-tree

58

Step 3



- each internal node is split into at most two parts
- each split operation promotes at most one element
- ▶ hence, on every level we want to insert at most one element per successor pointer
- we can use the same routine for every level

PA © Harald Räcke

4.5 Inserting into a (2,3)-tree

59