```
input: x[1]...x[n]
output: s[1]...s[n] with s[i] = \sum_{j=1}^{i} x[i] (w.r.t. operator *)
```

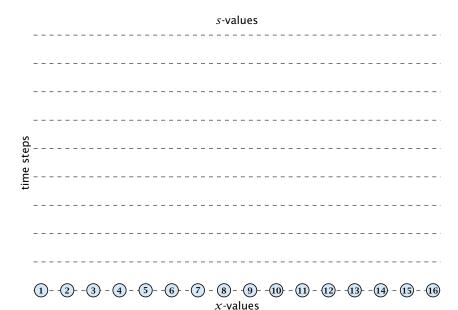


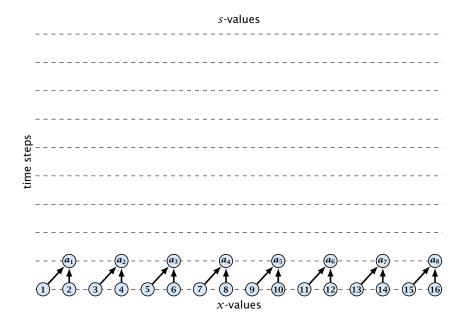
```
input: x[1]...x[n]
output: s[1]...s[n] with s[i] = \sum_{j=1}^{i} x[i] (w.r.t. operator *)
```

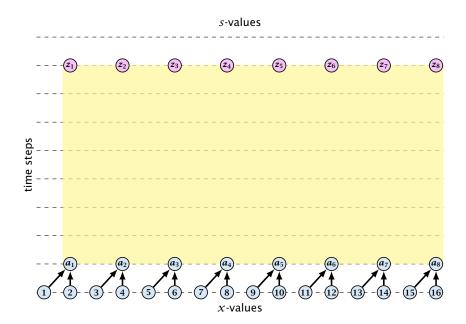
```
Algorithm 6 PrefixSum(n, x[1]...x[n])
1: // compute prefixsums; n = 2^k
2: if n = 1 then s[1] \leftarrow x[1]; return
3: for 1 \le i \le n/2 pardo
4: a[i] \leftarrow x[2i-1] * x[2i]
5: z[1], \dots, z[n/2] \leftarrow \operatorname{PrefixSum}(n/2, a[1], \dots, a[n/2])
6: for 1 \le i \le n pardo
7: i \text{ even } : s[i] \leftarrow z[i/2]
8: i = 1 : s[1] = x[1]
```

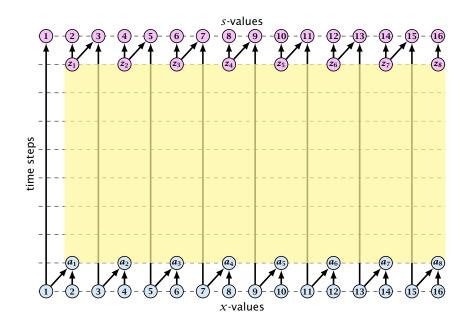
9: i odd : $s[i] \leftarrow z[(i-1)/2] * x[i]$

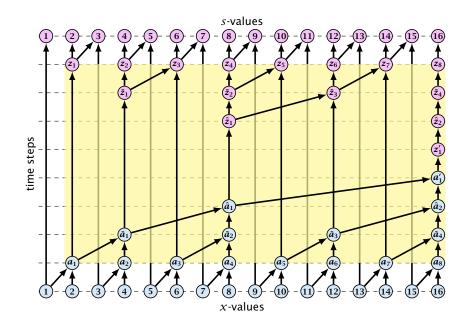
	s-values																																		
		-		-		-	-	-				-	-	-	 	 	-	-	-	-		 -	-	 	-	-		 -	-	-	 	-	 	-	
		-		-			_	-				_	-	-	 	 	-	-	-	_		 -	-	 		-	_	 -	-	-	 	-	 		
time steps		_		-			-	-				_	_	-	 	 		-	-	_		 -	-	 		-		 -	_	-	 	-	 		
		_		-			-	-				-	-	-	 	 	-	-	-	_		 -	-	 		-	_	 -	_	-	 	-	 	-	
		_		-			-	-				_	-	-	 	 	-	-	-	_		 -	-	 		-	_	 	-	-	 	-	 		
		_		-			_	-				_	-	-	 	 		-	-	_		 -	-	 		-		 	_	_	 	-	 		
		_		-			_	_				_	_	_	 	 	-	_	_	_		 _	_	 		_		 	_	_	 	-	 		
		-		-			_	-				_	-	-	 	 	-	-	-	-		 -	-	 		-		 -	-	-	 	-	 		
		_		-			-	-				_	-	-	 	 		-	-	_		 -	-	 		-		 	-	-	 	-	 		
		_		-			_	_				_	_	_	 	 		_	_	_		 -	-	 		_		 	_	_	 	-	 		
																	X	-v	a	lu	es														











The algorithm uses work $\mathcal{O}(n)$ and time $\mathcal{O}(\log n)$ for solving Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Theorem

On a CREW PRAM a Prefix Sum requires running time $\Omega(\log n)$ regardless of the number of processors.

The algorithm uses work $\mathcal{O}(n)$ and time $\mathcal{O}(\log n)$ for solving Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Theorem

On a CREW PRAM a Prefix Sum requires running time $\Omega(\log n)$ regardless of the number of processors.

The algorithm uses work $\mathcal{O}(n)$ and time $\mathcal{O}(\log n)$ for solving Prefix Sum on an EREW-PRAM with n processors.

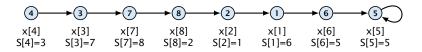
It is clearly work-optimal.

Theorem 1

On a CREW PRAM a Prefix Sum requires running time $\Omega(\log n)$ regardless of the number of processors.

Input: a linked list given by successor pointers; a value x[i] for every list element; an operator *;

Output: for every list position ℓ the sum (w.r.t. *) of elements after ℓ in the list (including ℓ)



Algorithm 7 ParallelPrefix

```
1: for 1 \le i \le n pardo
2: P[i] \leftarrow S[i]
3: while S[i] \ne S[S[i]] do
4: x[i] \leftarrow x[i] * x[S[i]]
5: S[i] \leftarrow S[S[i]]
6: if P[i] \ne i then S[i] \leftarrow x[S(i)]
```

The algorithm runs in time $O(\log n)$.

It has work requirement $\mathcal{O}(n \log n)$. non-optimal

Algorithm 7 ParallelPrefix

```
1: for 1 \le i \le n pardo
2: P[i] \leftarrow S[i]
3: while S[i] \ne S[S[i]] do
4: x[i] \leftarrow x[i] * x[S[i]]
5: S[i] \leftarrow S[S[i]]
6: if P[i] \ne i then S[i] \leftarrow x[S(i)]
```

The algorithm runs in time $O(\log n)$.

It has work requirement $O(n \log n)$. non-optima

Algorithm 7 ParallelPrefix

```
1: for 1 \le i \le n pardo

2: P[i] \leftarrow S[i]

3: while S[i] \ne S[S[i]] do

4: x[i] \leftarrow x[i] * x[S[i]]

5: S[i] \leftarrow S[S[i]]

6: if P[i] \ne i then S[i] \leftarrow x[S(i)]
```

The algorithm runs in time $O(\log n)$.

It has work requirement $O(n \log n)$. non-optimal

Algorithm 7 ParallelPrefix 1: for $1 \le i \le n$ pardo 2: $P[i] \leftarrow S[i]$ 3: while $S[i] \neq S[S[i]]$ do

4:
$$x[i] \leftarrow x[i] * x[S[i]]$$

5: $S[i] \leftarrow S[S[i]]$

if $P[i] \neq i$ then $S[i] \leftarrow x[S(i)]$

The algorithm runs in time $O(\log n)$.

It has work requirement $\mathcal{O}(n \log n)$. non-optimal

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 2

Let $X=(x_1,\ldots,x_t)$ be a sequence. The rank $\mathrm{rank}(y:X)$ of y in X is

$$rank(y:X) = |\{x \in X \mid x \le y\}|$$

For a sequence $Y = (y_1, ..., y_s)$ we define $\operatorname{rank}(Y : X) := (r_1, ..., r_s)$ with $r_i = \operatorname{rank}(y_i : X)$

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 2

Let $X = (x_1, ..., x_t)$ be a sequence. The rank rank(y : X) of y in X is

$$rank(y:X) = |\{x \in X \mid x \le y\}|$$

For a sequence $Y = (y_1, ..., y_s)$ we define $\operatorname{rank}(Y : X) := (r_1, ..., r_s)$ with $r_i = \operatorname{rank}(y_i : X)$

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 2

Let $X = (x_1, ..., x_t)$ be a sequence. The rank $\operatorname{rank}(y : X)$ of y in X is

$$rank(y:X) = |\{x \in X \mid x \le y\}|$$

For a sequence $Y = (y_1, ..., y_s)$ we define $\operatorname{rank}(Y : X) := (r_1, ..., r_s)$ with $r_i = \operatorname{rank}(y_i : X)$.

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 2

Let $X = (x_1, ..., x_t)$ be a sequence. The rank $\operatorname{rank}(y : X)$ of y in X is

$$rank(y:X) = |\{x \in X \mid x \le y\}|$$

For a sequence $Y = (y_1, ..., y_s)$ we define $\operatorname{rank}(Y : X) := (r_1, ..., r_s)$ with $r_i = \operatorname{rank}(y_i : X)$.

Given two sorted sequences $A = (a_1 \dots a_n)$ and $B = (b_1 \dots b_n)$, compute the sorted squence $C = (c_1 \dots c_n)$.

Observation:

We can assume wlog. that elements in A and B are different.

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $\operatorname{rank}(x : A \cup B) = \operatorname{rank}(x : A) + \operatorname{rank}(x : B)$.

Given two sorted sequences $A = (a_1 ... a_n)$ and $B = (b_1 ... b_n)$, compute the sorted squence $C = (c_1 ... c_n)$.

Observation:

We can assume wlog. that elements in A and B are different

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $\operatorname{rank}(x : A \cup B) = \operatorname{rank}(x : A) + \operatorname{rank}(x : B)$.

Clearly, for $x \in A$ we already know $\operatorname{rank}(x : A)$, and for $x \in B$ we know $\operatorname{rank}(x : B)$.

Given two sorted sequences $A = (a_1 ... a_n)$ and $B = (b_1 ... b_n)$, compute the sorted squence $C = (c_1 ... c_n)$.

Observation:

We can assume wlog. that elements in A and B are different.

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $rank(x : A \cup B) = rank(x : A) + rank(x : B)$.

Given two sorted sequences $A = (a_1 ... a_n)$ and $B = (b_1 ... b_n)$, compute the sorted squence $C = (c_1 ... c_n)$.

Observation:

We can assume wlog. that elements in A and B are different.

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $rank(x : A \cup B) = rank(x : A) + rank(x : B)$.

Given two sorted sequences $A = (a_1 ... a_n)$ and $B = (b_1 ... b_n)$, compute the sorted squence $C = (c_1 ... c_n)$.

Observation:

We can assume wlog. that elements in A and B are different.

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $rank(x : A \cup B) = rank(x : A) + rank(x : B)$.

Given two sorted sequences $A = (a_1 ... a_n)$ and $B = (b_1 ... b_n)$, compute the sorted squence $C = (c_1 ... c_n)$.

Observation:

We can assume wlog. that elements in A and B are different.

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $rank(x : A \cup B) = rank(x : A) + rank(x : B)$.

Clearly, for $x \in A$ we already know $\operatorname{rank}(x : A)$, and for $x \in B$ we know $\operatorname{rank}(x : B)$.

Given two sorted sequences $A = (a_1 ... a_n)$ and $B = (b_1 ... b_n)$, compute the sorted squence $C = (c_1 ... c_n)$.

Observation:

We can assume wlog. that elements in A and B are different.

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $rank(x : A \cup B) = rank(x : A) + rank(x : B)$.

Compute $\operatorname{rank}(x:A)$ for all $x\in B$ and $\operatorname{rank}(x:B)$ for all $x\in A$. can be done in $\mathcal{O}(\log n)$ time with 2n processors by binary search

Lemma 3

On a CREW PRAM, Merging can be done in $O(\log n)$ time and $O(n\log n)$ work.

Compute $\operatorname{rank}(x:A)$ for all $x \in B$ and $\operatorname{rank}(x:B)$ for all $x \in A$. can be done in $\mathcal{O}(\log n)$ time with 2n processors by binary search

Lemma 3

On a CREW PRAM, Merging can be done in $O(\log n)$ time and $O(n\log n)$ work.

Compute $\operatorname{rank}(x:A)$ for all $x \in B$ and $\operatorname{rank}(x:B)$ for all $x \in A$. can be done in $\mathcal{O}(\log n)$ time with 2n processors by binary search

Lemma 3

On a CREW PRAM, Merging can be done in $\mathcal{O}(\log n)$ time and $\mathcal{O}(n\log n)$ work.

Compute $\operatorname{rank}(x:A)$ for all $x \in B$ and $\operatorname{rank}(x:B)$ for all $x \in A$. can be done in $\mathcal{O}(\log n)$ time with 2n processors by binary search

Lemma 3

On a CREW PRAM, Merging can be done in $\mathcal{O}(\log n)$ time and $\mathcal{O}(n\log n)$ work.

$$A = (a_1, \dots, a_n); B = (b_1, \dots, b_n);$$

log n integral; $k := n/\log n$ integral;

Algorithm 8 GenerateSubproblems

- 1: $j_0 \leftarrow 0$
- 2: $j_k \leftarrow n$
- 3: for $1 \le i \le k-1$ pardo
- 4: $j_i \leftarrow \operatorname{rank}(b_{i\log n}:A)$
- 5: for $0 \le i \le k-1$ pardo
- $B_i \leftarrow (b_{i\log n+1}, \dots, b_{(i+1)\log n})$
- 7: $A_i \leftarrow (a_{j_i+1}, \dots, a_{j_{i+1}})$

If C_i is the merging of A_i and B_i then the sequence $C_0 \dots C_{k-1}$ is a sorted sequence.

$$A = (a_1, \dots, a_n); B = (b_1, \dots, b_n);$$

 $\log n$ integral; $k := n/\log n$ integral;

Algorithm 8 GenerateSubproblems

- 1: J₀ ← U
- 2: $j_k \leftarrow n$
- 3: **for** $1 \le i \le k 1$ **pardo**
- 4: $j_i \leftarrow \operatorname{rank}(b_{i\log n}:A)$
- 5: **for** $0 \le i \le k 1$ **pardo**
- $B_i \leftarrow (b_{i\log n+1}, \dots, b_{(i+1)\log n})$
- 7: $A_i \leftarrow (a_{j_i+1}, \dots, a_{j_{i+1}})$

If C_i is the merging of A_i and B_i then the sequence $C_0 \dots C_{k-1}$ is a sorted sequence.


```
A = (a_1, \dots, a_n); B = (b_1, \dots, b_n);

\log n integral; k := n/\log n integral;
```

Algorithm 8 GenerateSubproblems

- 1: $j_0 \leftarrow 0$
- 2: $j_k \leftarrow n$
- 3: for $1 \le i \le k-1$ pardo
- 4: $j_i \leftarrow \operatorname{rank}(b_{i \log n} : A)$
- 5: **for** $0 \le i \le k 1$ **pardo**
- 6: $B_i \leftarrow (b_{i\log n+1}, \ldots, b_{(i+1)\log n})$
- 7: $A_i \leftarrow (a_{j_i+1}, \dots, a_{j_{i+1}})$

If C_i is the merging of A_i and B_i then the sequence $C_0 \dots C_{k-1}$ is a sorted sequence.


```
A = (a_1, \dots, a_n) : B = (b_1, \dots, b_n) :
\log n integral; k := n/\log n integral;
```

Algorithm 8 GenerateSubproblems

- 1: $j_0 \leftarrow 0$ 2: $j_k \leftarrow n$
- 3: for $1 \le i \le k-1$ pardo
- 4: $j_i \leftarrow \operatorname{rank}(b_{i \log n} : A)$
- 5: for $0 \le i \le k-1$ pardo
- 6: $B_i \leftarrow (b_{i \log n + 1}, \dots, b_{(i+1) \log n})$ 7: $A_i \leftarrow (a_{j_i + 1}, \dots, a_{j_{i+1}})$

If C_i is the merging of A_i and B_i then the sequence $C_0 \dots C_{k-1}$ is a sorted sequence.

We can generate the subproblems in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(n)$.

Note that in a sub-problem B_i has length $\log n$.

If we run the algorithm again for every subproblem, (where A_i takes the role of B) we can in time $\mathcal{O}(\log\log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_j and B_j have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(|A_i|+|B_i|)$.

Parallelizing the last step gives total work $\mathcal{O}(n)$ and time $\mathcal{O}(\log n)$.

the resulting algorithm is work optima

We can generate the subproblems in time $O(\log n)$ and work O(n).

Note that in a sub-problem B_i has length $\log n$.

If we run the algorithm again for every subproblem, (where A_i takes the role of B) we can in time $\mathcal{O}(\log\log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_j and B_j have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(|A_i| + |B_i|)$.

Parallelizing the last step gives total work O(n) and time $O(\log n)$.

We can generate the subproblems in time $O(\log n)$ and work O(n).

Note that in a sub-problem B_i has length $\log n$.

If we run the algorithm again for every subproblem, (where A_i takes the role of B) we can in time $\mathcal{O}(\log\log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_j and B_j have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(|A_i| + |B_i|)$.

Parallelizing the last step gives total work O(n) and time $O(\log n)$.

We can generate the subproblems in time $O(\log n)$ and work O(n).

Note that in a sub-problem B_i has length $\log n$.

If we run the algorithm again for every subproblem, (where A_i takes the role of B) we can in time $\mathcal{O}(\log\log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_j and B_j have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(|A_i| + |B_i|)$.

Parallelizing the last step gives total work O(n) and time $O(\log n)$.

We can generate the subproblems in time $O(\log n)$ and work O(n).

Note that in a sub-problem B_i has length $\log n$.

If we run the algorithm again for every subproblem, (where A_i takes the role of B) we can in time $\mathcal{O}(\log\log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_j and B_j have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(|A_i| + |B_i|)$.

Parallelizing the last step gives total work $\mathcal{O}(n)$ and time $\mathcal{O}(\log n)$.

We can generate the subproblems in time $O(\log n)$ and work O(n).

Note that in a sub-problem B_i has length $\log n$.

If we run the algorithm again for every subproblem, (where A_i takes the role of B) we can in time $\mathcal{O}(\log\log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_j and B_j have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(|A_i| + |B_i|)$.

Parallelizing the last step gives total work $\mathcal{O}(n)$ and time $\mathcal{O}(\log n)$.

Lemma 4

On a CRCW PRAM the maximum of n numbers can be computed in time $\mathcal{O}(1)$ with n^2 processors.

proof on board..

Lemma 4

On a CRCW PRAM the maximum of n numbers can be computed in time $\mathcal{O}(1)$ with n^2 processors.

proof on board...

Lemma 5

On a CRCW PRAM the maximum of n numbers can be computed in time $O(\log \log n)$ with n processors and work $O(n \log \log n)$.

proof on board..

Lemma 5

On a CRCW PRAM the maximum of n numbers can be computed in time $O(\log \log n)$ with n processors and work $O(n \log \log n)$.

proof on board...

Lemma 6

On a CRCW PRAM the maximum of n numbers can be computed in time $O(\log \log n)$ with n processors and work O(n).

proof on board..

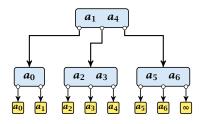
Lemma 6

On a CRCW PRAM the maximum of n numbers can be computed in time $O(\log \log n)$ with n processors and work O(n).

proof on board...

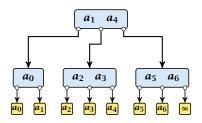
Given a (2,3)-tree with n elements, and a sequence $x_0 < x_1 < x_2 < \cdots < x_k$ of elements. We want to insert elements x_1, \dots, x_k into the tree $(k \ll n)$.

time: $O(\log n)$; work: $O(k \log n)$



Given a (2,3)-tree with n elements, and a sequence $x_0 < x_1 < x_2 < \cdots < x_k$ of elements. We want to insert elements x_1, \ldots, x_k into the tree $(k \ll n)$.

time: $O(\log n)$; work: $O(k \log n)$



1. determine for every x_i the leaf element before which it has to be inserted

time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM

all x_i 's that have to be inserted before the same element form a chain

determine the largest/smallest/middle element of every chain

insert the middle element of every chain compute new chains

time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k_i \log n)$; k_i = #inserted elements (computing new chains is constant time)

4. repeat Step 3 for logarithmically many rounds time: $O(\log n \log k)$; work: $O(k \log n)$;

1. determine for every x_i the leaf element before which it has to be inserted

time: $O(\log n)$; work: $O(k \log n)$; CREW PRAM

all x_i 's that have to be inserted before the same element form a chain

- determine the largest/smallest/middle element of every chain
 - time: $\mathcal{O}(1)$; work: $\mathcal{O}(k)$;
- 3. insert the middle element of every chain compute new chains time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k_i \log n)$; k_i = #inserted elements (computing new chains is constant time)
- **4.** repeat Step 3 for logarithmically many rounds time: $O(\log n \log k)$; work: $O(k \log n)$;

1. determine for every x_i the leaf element before which it has to be inserted

time: $O(\log n)$; work: $O(k \log n)$; CREW PRAM

all x_i 's that have to be inserted before the same element form a chain

determine the largest/smallest/middle element of every chain

time: $\mathcal{O}(1)$; work: $\mathcal{O}(k)$;

- 3. insert the middle element of every chain compute new chains time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k_i \log n)$; k_i = #inserted elements (computing new chains is constant time)
- **4.** repeat Step 3 for logarithmically many rounds time: $O(\log n \log k)$; work: $O(k \log n)$:

1. determine for every x_i the leaf element before which it has to be inserted

time: $O(\log n)$; work: $O(k \log n)$; CREW PRAM

all x_i 's that have to be inserted before the same element form a chain

determine the largest/smallest/middle element of every chain

time: $\mathcal{O}(1)$; work: $\mathcal{O}(k)$;

3. insert the middle element of every chain compute new chains time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k_i \log n)$; k_i = #inserted elements (computing new chains is constant time)

4. repeat Step 3 for logarithmically many rounds time: $O(\log n \log k)$; work: $O(k \log n)$;

1. determine for every x_i the leaf element before which it has to be inserted

time: $O(\log n)$; work: $O(k \log n)$; CREW PRAM

all x_i 's that have to be inserted before the same element form a chain

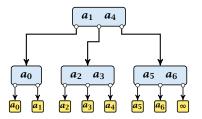
determine the largest/smallest/middle element of every chain

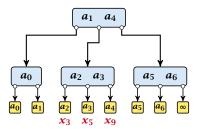
time: $\mathcal{O}(1)$; work: $\mathcal{O}(k)$;

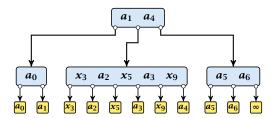
3. insert the middle element of every chain compute new chains time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k_i \log n)$; k_i = #inserted elements

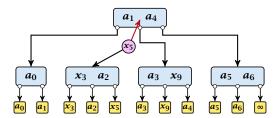
(computing new chains is constant time)

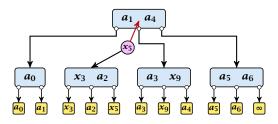
4. repeat Step 3 for logarithmically many rounds time: $O(\log n \log k)$; work: $O(k \log n)$;



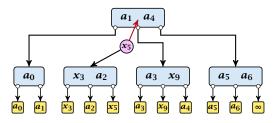




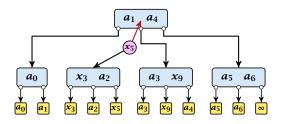




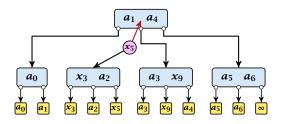
each internal node is split into at most two parts



- each internal node is split into at most two parts
- each split operation promotes at most one element



- each internal node is split into at most two parts
- each split operation promotes at most one element
- hence, on every level we want to insert at most one element per successor pointer



- each internal node is split into at most two parts
- each split operation promotes at most one element
- hence, on every level we want to insert at most one element per successor pointer
- we can use the same routine for every level

- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

Observation

We can start with phase i of round r as long as phase i of round r-1 and (of course), phase i-1 of round r has finished.

- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

Observation

We can start with phase i of round r as long as phase i of round r-1 and (of course), phase i-1 of round r has finished.

- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

Observation

We can start with phase i of round r as long as phase i of round r-1 and (of course), phase i-1 of round r has finished.

- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

Observation

We can start with phase i of round r as long as phase i of round r-1 and (of course), phase i-1 of round r has finished.

The following algorithm colors an n-node cycle with $\lceil \log n \rceil$ colors.

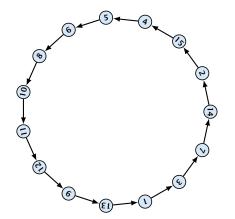
Algorithm 9 BasicColoring

1: for $1 \le i \le n$ pardo

2: $\operatorname{col}(i) \leftarrow i$

3: $k_i \leftarrow \text{smallest bitpos where } \operatorname{col}(i) \text{ and } \operatorname{col}(S(i)) \text{ differ}$

4: $\operatorname{col}'(i) \leftarrow 2k + \operatorname{col}(i)_k$



v	col	k	col'
1	0001	1	2
3	0011	2	4
7	0111	0	1
14	1110	2	5
2	0010	0	0
15	1111	0	1
4	0100	0	0
5	0101	0	1
6	0110	1	3
8	1000	1	2
10	1010	0	0
- 11	1011	0	1
12	1100	0	0
9	1001	2	4
13	1101	2	5

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1)+1$$

and bit-length at most

 $\lceil \log_2(2(t-1)+1) \rceil \le \lceil \log_2(t-1) \rceil + 1 \le \lceil \log_2(t) \rceil + 1$

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1)+1$$

and bit-length at most

$$\lceil \log_2(2(t-1)+1) \rceil \leq \lceil \log_2(t-1) \rceil + 1 \leq \lceil \log_2(t) \rceil + 1$$

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1)+1$$

and bit-length at most

$$\lceil \log_2(2(t-1)+1) \rceil \leq \lceil \log_2(t-1) \rceil + 1 \leq \lceil \log_2(t) \rceil + 1$$

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1)+1$$

and bit-length at most

$$\lceil \log_2(2(t-1)+1) \rceil \leq \lceil \log_2(t-1) \rceil + 1 \leq \lceil \log_2(t) \rceil + 1$$

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1)+1$$

and bit-length at most

$$\lceil \log_2(2(t-1)+1) \rceil \leq \lceil \log_2(t-1) \rceil + 1 \leq \lceil \log_2(t) \rceil + 1$$

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5 = 2t - 1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

```
Algorithm 10 ReColor

1: for \ell - 5 to 3

2: for 1 \le i \le n pardo

3: if \operatorname{col}(i) = \ell then

4: \operatorname{col}(i) \leftarrow \min\{\{0,1,2\} \setminus \{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}
```

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range 0, ..., 5 = 2t - 1.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

```
Algorithm 10 ReColor

1: for \ell - 5 to 3

2: for 1 \le i \le n pardo

3: if \operatorname{col}(i) = \ell then

4: \operatorname{col}(i) \leftarrow \min\{\{0,1,2\} \setminus \{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}
```

This requires time O(1) and work O(n).

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range 0, ..., 5 = 2t - 1.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

```
Algorithm 10 ReColor

1: for \ell \leftarrow 5 to 3

2: for 1 \le i \le n pardo

3: if \operatorname{col}(i) = \ell then

4: \operatorname{col}(i) \leftarrow \min\{\{0,1,2\} \setminus \{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}
```

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range 0, ..., 5 = 2t - 1.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

```
Algorithm 10 ReColor

1: for \ell \leftarrow 5 to 3

2: for 1 \le i \le n pardo

3: if \operatorname{col}(i) = \ell then

4: \operatorname{col}(i) \leftarrow \min\{\{0,1,2\} \setminus \{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}
```

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.

Lemma 7

We can color vertices in a ring with three colors in $O(\log^* n)$ time and with $O(n \log^* n)$ work.

not work optimal

Lemma 8

Given n integers in the range $0, \ldots, \mathcal{O}(\log n)$, there is an algorithm that sorts these numbers in $\mathcal{O}(\log n)$ time using a linear number of operations.

Proof: Exercise!

Algorithm 11 OptColor

- 1: for $1 \le i \le n$ pardo
- 2: $\operatorname{col}(i) \leftarrow i$
- 3: apply BasicColoring once
- 4: sort vertices by colors
- 5: **for** $\ell = 2\lceil \log n \rceil$ **to** 3 **do**
- 6: **for** all vertices i of color ℓ **pardo**
- 7: $\operatorname{col}(i) \leftarrow \min\{\{0, 1, 2\} \setminus \{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}$

Lemma 9

A ring can be colored with 3 colors in time $O(\log n)$ and with work O(n).

work optimal but not too fast

