Prefix Sum

input: $x[1] \ldots x[n]$
output: $s[1] \ldots s[n]$ with $s[i]=\sum_{j=1}^{i} x[i]$ (w.r.t. operator $*$)

Prefix Sum

```
input: x[1]...x[n]
output: s[1]\ldotss[n] with s[i]= \sum i
```

```
Algorithm 6 PrefixSum ( \(n, x[1] \ldots x[n]\) )
    1: // compute prefixsums; \(n=2^{k}\)
    2: if \(n=1\) then \(s\) [1] \(\leftarrow\) [1]; return
    3: for \(1 \leq i \leq n / 2\) pardo
    4: \(\quad a[i] \leftarrow x[2 i-1] * x[2 i]\)
    5: \(z[1], \ldots, z[n / 2] \leftarrow \operatorname{PrefixSum}(n / 2, a[1] \ldots a[n / 2])\)
    6: for \(1 \leq i \leq n\) pardo
    7: \(\quad i\) even \(: s[i] \leftarrow z[i / 2]\)
    8: \(\quad i=1 \quad: s[1]=x[1]\)
    9: \(\quad i\) odd \(\quad: s[i] \leftarrow z[(i-1) / 2] * x[i]\)
```


Prefix Sum

s-values

x-values

Prefix Sum

s-values

$$
\begin{gathered}
\text { (1)- (2)-(3)-(4)-(5)-(6)-(7)-(8)-(9)-(10)-(11)-(11)-(16)-(16) } \\
x \text {-values }
\end{gathered}
$$

Prefix Sum

s-values

Prefix Sum

s-values

$$
\begin{equation*}
\cdots-\left(z_{1}\right) \cdots\left(z_{2}\right) \cdots\left(z_{3}\right) \cdots \tag{5}
\end{equation*}
$$

Prefix Sum

Prefix Sum

Prefix Sum

The algorithm uses work $\mathcal{O}(n)$ and time $\mathcal{O}(\log n)$ for solving Prefix Sum on an EREW-PRAM with n processors.

Prefix Sum

The algorithm uses work $\mathcal{O}(n)$ and time $\mathcal{O}(\log n)$ for solving Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Prefix Sum

The algorithm uses work $\mathcal{O}(n)$ and time $\mathcal{O}(\log n)$ for solving Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Theorem 1

On a CREW PRAM a Prefix Sum requires running time $\Omega(\log n)$ regardless of the number of processors.

Parallel Prefix

Input: a linked list given by successor pointers; a value $x[i]$ for every list element; an operator $*$;

Output: for every list position ℓ the sum (w.r.t. $*$) of elements after ℓ in the list (including ℓ)

Parallel Prefix

```
Algorithm 7 ParallelPrefix
    1: for 1\leqi\leqn pardo
    2:
    3: while }S[i]\not=S[S[i]] d
    4: }\quadx[i]\leftarrowx[i]*x[S[i]
    5:
    S[i]}\leftarrowS[S[i]
    6:
    if P[i]\not=i then S[i]\leftarrowx[S(i)]
```


Parallel Prefix

```
Algorithm 7 ParalleIPrefix
    1: for 1\leqi\leqn pardo
    2:
    3: while S[i]\not=S[S[i]] do
    4: }\quadx[i]\leftarrowx[i]*x[S[i]
    5: }\quadS[i]\leftarrowS[S[i]
    6: if P[i]\not=i}\mathrm{ then S[i]}\leftarrowx[S(i)
```

The algorithm runs in time $\mathcal{O}(\log n)$.

Parallel Prefix

```
Algorithm 7 ParallelPrefix
    1: for 1\leqi\leqn pardo
    2:
    3: while }S[i]\not=S[S[i]] d
    4: }\quadx[i]\leftarrowx[i]*x[S[i]
    5: }\quadS[i]\leftarrowS[S[i]
    6: if P[i]\not=i then S[i]\leftarrowx[S(i)]
```

The algorithm runs in time $\mathcal{O}(\log n)$.
It has work requirement $\mathcal{O}(n \log n)$. non-optimal

Parallel Prefix

```
Algorithm 7 ParallelPrefix
    1: for 1\leqi\leqn pardo
    2:
    3: while }S[i]\not=S[S[i]] d
    4: }\quadx[i]\leftarrowx[i]*x[S[i]
    5: }\quadS[i]\leftarrowS[S[i]
    6: if P[i]\not=i then S[i]\leftarrowx[S(i)]
```

The algorithm runs in time $\mathcal{O}(\log n)$.
It has work requirement $\mathcal{O}(n \log n)$. non-optimal

This technique is also known as pointer jumping

4.3 Divide \& Conquer - Merging

4.3 Divide \& Conquer - Merging

Given two sorted sequences $A=\left(a_{1}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, \ldots, b_{n}\right)$, compute the sorted squence $C=\left(c_{1}, \ldots, c_{n}\right)$.

4.3 Divide \& Conquer - Merging

Given two sorted sequences $A=\left(a_{1}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, \ldots, b_{n}\right)$, compute the sorted squence $C=\left(c_{1}, \ldots, c_{n}\right)$.

Definition 2

Let $X=\left(x_{1}, \ldots, x_{t}\right)$ be a sequence. The rank $\operatorname{rank}(y: X)$ of y in X is

$$
\operatorname{rank}(y: X)=|\{x \in X \mid x \leq y\}|
$$

4.3 Divide \& Conquer - Merging

Given two sorted sequences $A=\left(a_{1}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, \ldots, b_{n}\right)$, compute the sorted squence $C=\left(c_{1}, \ldots, c_{n}\right)$.

Definition 2

Let $X=\left(x_{1}, \ldots, x_{t}\right)$ be a sequence. The rank $\operatorname{rank}(y: X)$ of y in X is

$$
\operatorname{rank}(y: X)=|\{x \in X \mid x \leq y\}|
$$

For a sequence $Y=\left(y_{1}, \ldots, y_{s}\right)$ we define
$\operatorname{rank}(Y: X):=\left(r_{1}, \ldots, r_{s}\right)$ with $r_{i}=\operatorname{rank}\left(y_{i}: X\right)$.

4.3 Divide \& Conquer - Merging

4.3 Divide \& Conquer - Merging

Given two sorted sequences $A=\left(a_{1} \ldots a_{n}\right)$ and $B=\left(b_{1} \ldots b_{n}\right)$, compute the sorted squence $C=\left(c_{1} \ldots c_{n}\right)$.

4.3 Divide \& Conquer - Merging

Given two sorted sequences $A=\left(a_{1} \ldots a_{n}\right)$ and $B=\left(b_{1} \ldots b_{n}\right)$, compute the sorted squence $C=\left(c_{1} \ldots c_{n}\right)$.

Observation:
We can assume wlog. that elements in A and B are different.

4.3 Divide \& Conquer - Merging

Given two sorted sequences $A=\left(a_{1} \ldots a_{n}\right)$ and $B=\left(b_{1} \ldots b_{n}\right)$, compute the sorted squence $C=\left(c_{1} \ldots c_{n}\right)$.

Observation:
We can assume wlog. that elements in A and B are different.
Then for $c_{i} \in C$ we have $i=\operatorname{rank}\left(c_{i}: A \cup B\right)$.

4.3 Divide \& Conquer - Merging

Given two sorted sequences $A=\left(a_{1} \ldots a_{n}\right)$ and $B=\left(b_{1} \ldots b_{n}\right)$, compute the sorted squence $C=\left(c_{1} \ldots c_{n}\right)$.

Observation:
We can assume wlog. that elements in A and B are different.
Then for $c_{i} \in C$ we have $i=\operatorname{rank}\left(c_{i}: A \cup B\right)$.
This means we just need to determine $\operatorname{rank}(x: A \cup B)$ for all elements!

4.3 Divide \& Conquer - Merging

Given two sorted sequences $A=\left(a_{1} \ldots a_{n}\right)$ and $B=\left(b_{1} \ldots b_{n}\right)$, compute the sorted squence $C=\left(c_{1} \ldots c_{n}\right)$.

Observation:
We can assume wlog. that elements in A and B are different.
Then for $c_{i} \in C$ we have $i=\operatorname{rank}\left(c_{i}: A \cup B\right)$.
This means we just need to determine $\operatorname{rank}(x: A \cup B)$ for all elements!

Observe, that $\operatorname{rank}(x: A \cup B)=\operatorname{rank}(x: A)+\operatorname{rank}(x: B)$.

4.3 Divide \& Conquer - Merging

Given two sorted sequences $A=\left(a_{1} \ldots a_{n}\right)$ and $B=\left(b_{1} \ldots b_{n}\right)$, compute the sorted squence $C=\left(c_{1} \ldots c_{n}\right)$.

Observation:
We can assume wlog. that elements in A and B are different.
Then for $c_{i} \in C$ we have $i=\operatorname{rank}\left(c_{i}: A \cup B\right)$.
This means we just need to determine $\operatorname{rank}(x: A \cup B)$ for all elements!

Observe, that $\operatorname{rank}(x: A \cup B)=\operatorname{rank}(x: A)+\operatorname{rank}(x: B)$.
Clearly, for $x \in A$ we already know $\operatorname{rank}(x: A)$, and for $x \in B$ we know $\operatorname{rank}(x: B)$.

4．3 Divide \＆Conquer－Merging

4.3 Divide \& Conquer - Merging

Compute $\operatorname{rank}(x: A)$ for all $x \in B$ and $\operatorname{rank}(x: B)$ for all $x \in A$. can be done in $\mathcal{O}(\log n)$ time with $2 n$ processors by binary search

4.3 Divide \& Conquer - Merging

Compute $\operatorname{rank}(x: A)$ for all $x \in B$ and $\operatorname{rank}(x: B)$ for all $x \in A$. can be done in $\mathcal{O}(\log n)$ time with $2 n$ processors by binary search

Lemma 3

On a CREW PRAM, Merging can be done in $\mathcal{O}(\log n)$ time and $\mathcal{O}(n \log n)$ work.

4.3 Divide \& Conquer - Merging

Compute $\operatorname{rank}(x: A)$ for all $x \in B$ and $\operatorname{rank}(x: B)$ for all $x \in A$. can be done in $\mathcal{O}(\log n)$ time with $2 n$ processors by binary search

Lemma 3

On a CREW PRAM, Merging can be done in $\mathcal{O}(\log n)$ time and $\mathcal{O}(n \log n)$ work.
not optimal

4.3 Divide \& Conquer - Merging

4.3 Divide \& Conquer - Merging

$A=\left(a_{1}, \ldots, a_{n}\right) ; B=\left(b_{1}, \ldots, b_{n}\right) ;$
$\log n$ integral; $k:=n / \log n$ integral;

4.3 Divide \& Conquer - Merging

$$
A=\left(a_{1}, \ldots, a_{n}\right) ; B=\left(b_{1}, \ldots, b_{n}\right) ;
$$

$\log n$ integral; $k:=n / \log n$ integral;

$$
\begin{aligned}
& \text { Algorithm } 8 \text { GenerateSubproblems } \\
& \hline \text { 1: } j_{0} \leftarrow 0 \\
& \text { 2: } j_{k} \leftarrow n \\
& \text { 3: for } 1 \leq i \leq k-1 \text { pardo } \\
& \text { 4: } \quad j_{i} \leftarrow \operatorname{rank}\left(b_{i \log n}: A\right) \\
& \text { 5: for } 0 \leq i \leq k-1 \text { pardo } \\
& \text { 6: } \quad B_{i} \leftarrow\left(b_{i \log n+1}, \ldots, b_{(i+1)} \log n\right) \\
& \text { 7: } \quad A_{i} \leftarrow\left(a_{j_{i}+1}, \ldots, a_{j_{i+1}}\right)
\end{aligned}
$$

4.3 Divide \& Conquer - Merging

$A=\left(a_{1}, \ldots, a_{n}\right) ; B=\left(b_{1}, \ldots, b_{n}\right) ;$
$\log n$ integral; $k:=n / \log n$ integral;

$$
\begin{aligned}
& \text { Algorithm } 8 \text { GenerateSubproblems } \\
& \hline \text { 1: } j_{0} \leftarrow 0 \\
& \text { 2: } j_{k} \leftarrow n \\
& \text { 3: for } 1 \leq i \leq k-1 \text { pardo } \\
& \text { 4: } \quad j_{i} \leftarrow \operatorname{rank}\left(b_{i \log n}: A\right) \\
& \text { 5: for } 0 \leq i \leq k-1 \text { pardo } \\
& \text { 6: } \quad B_{i} \leftarrow\left(b_{i \log n+1}, \ldots, b_{(i+1) \log n}\right) \\
& \text { 7: } \quad A_{i} \leftarrow\left(a_{j_{i}+1}, \ldots, a_{j_{i+1}}\right)
\end{aligned}
$$

If C_{i} is the merging of A_{i} and B_{i} then the sequence $C_{0} \ldots C_{k-1}$ is a sorted sequence.

4.3 Divide \& Conquer - Merging

4.3 Divide \& Conquer - Merging

We can generate the subproblems in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(n)$.

4.3 Divide \& Conquer - Merging

We can generate the subproblems in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(n)$.

Note that in a sub-problem B_{i} has length $\log n$.

4.3 Divide \& Conquer - Merging

We can generate the subproblems in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(n)$.

Note that in a sub-problem B_{i} has length $\log n$.
If we run the algorithm again for every subproblem, (where A_{i} takes the role of B) we can in time $\mathcal{O}(\log \log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_{j} and B_{j} have both length at most $\log n$.

4.3 Divide \& Conquer - Merging

We can generate the subproblems in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(n)$.

Note that in a sub-problem B_{i} has length $\log n$.
If we run the algorithm again for every subproblem, (where A_{i} takes the role of B) we can in time $\mathcal{O}(\log \log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_{j} and B_{j} have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $\mathcal{O}(\log n)$ and work $\mathcal{O}\left(\left|A_{i}\right|+\left|B_{i}\right|\right)$.

4.3 Divide \& Conquer - Merging

We can generate the subproblems in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(n)$.

Note that in a sub-problem B_{i} has length $\log n$.
If we run the algorithm again for every subproblem, (where A_{i} takes the role of B) we can in time $\mathcal{O}(\log \log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_{j} and B_{j} have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $\mathcal{O}(\log n)$ and work $\mathcal{O}\left(\left|A_{i}\right|+\left|B_{i}\right|\right)$.

Parallelizing the last step gives total work $\mathcal{O}(n)$ and time $\mathcal{O}(\log n)$.
the resulting algorithm is work optimal

4.4 Maximum Computation

Lemma 4

On a CRCW PRAM the maximum of n numbers can be computed in time $\mathcal{O}(1)$ with n^{2} processors.

4.4 Maximum Computation

Lemma 4

On a CRCW PRAM the maximum of n numbers can be computed in time $\mathcal{O}(1)$ with n^{2} processors.
proof on board...

4.4 Maximum Computation

Lemma 5

On a CRCW PRAM the maximum of n numbers can be computed in time $\mathcal{O}(\log \log n)$ with n processors and work $\mathcal{O}(n \log \log n)$.

4.4 Maximum Computation

Lemma 5

On a CRCW PRAM the maximum of n numbers can be computed in time $\mathcal{O}(\log \log n)$ with n processors and work $\mathcal{O}(n \log \log n)$.
proof on board...

4.4 Maximum Computation

Lemma 6

On a CRCW PRAM the maximum of n numbers can be computed in time $\mathcal{O}(\log \log n)$ with n processors and work $\mathcal{O}(n)$.

4.4 Maximum Computation

Lemma 6

On a CRCW PRAM the maximum of n numbers can be computed in time $\mathcal{O}(\log \log n)$ with n processors and work $\mathcal{O}(n)$.
proof on board...

4.5 Inserting into a (2, 3)-tree

Given a (2,3)-tree with n elements, and a sequence $x_{0}<x_{1}<x_{2}<\cdots<x_{k}$ of elements. We want to insert elements x_{1}, \ldots, x_{k} into the tree $(k<n)$.

4.5 Inserting into a (2, 3)-tree

Given a (2,3)-tree with n elements, and a sequence $x_{0}<x_{1}<x_{2}<\cdots<x_{k}$ of elements. We want to insert elements x_{1}, \ldots, x_{k} into the tree $(k \ll n)$. time: $\mathcal{O}(\log n) ;$ work: $\mathcal{O}(k \log n)$

4.5 Inserting into a (2, 3)-tree

1. determine for every x_{i} the leaf element before which it has to be inserted time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM

4.5 Inserting into a (2, 3)-tree

1. determine for every x_{i} the leaf element before which it has to be inserted time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM all x_{i} 's that have to be inserted before the same element form a chain

4.5 Inserting into a (2, 3)-tree

1. determine for every x_{i} the leaf element before which it has to be inserted
time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM
all x_{i} 's that have to be inserted before the same element form a chain
2. determine the largest/smallest/middle element of every chain time: $\mathcal{O}(1)$; work: $\mathcal{O}(k)$;

4.5 Inserting into a (2, 3)-tree

1. determine for every x_{i} the leaf element before which it has to be inserted
time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM
all x_{i} 's that have to be inserted before the same element form a chain
2. determine the largest/smallest/middle element of every chain
time: $\mathcal{O}(1)$; work: $\mathcal{O}(k)$;
3. insert the middle element of every chain compute new chains
time: $\mathcal{O}(\log n)$; work: $\mathcal{O}\left(k_{i} \log n\right)$; $k_{i}=$ \#inserted elements (computing new chains is constant time)

4.5 Inserting into a (2, 3)-tree

1. determine for every x_{i} the leaf element before which it has to be inserted time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM all x_{i} 's that have to be inserted before the same element form a chain
2. determine the largest/smallest/middle element of every chain
time: $\mathcal{O}(1)$; work: $\mathcal{O}(k)$;
3. insert the middle element of every chain compute new chains
time: $\mathcal{O}(\log n)$; work: $\mathcal{O}\left(k_{i} \log n\right) ; k_{i}=$ \#inserted elements (computing new chains is constant time)
4. repeat Step 3 for logarithmically many rounds time: $\mathcal{O}(\log n \log k)$; work: $\mathcal{O}(k \log n)$;

Step 3

- each internal node is split into at most two parts

Step 3

- each internal node is split into at most two parts
- each split operation promotes at most one element

Step 3

- each internal node is split into at most two parts
- each split operation promotes at most one element
- hence, on every level we want to insert at most one element per successor pointer

Step 3

- each internal node is split into at most two parts
- each split operation promotes at most one element
- hence, on every level we want to insert at most one element per successor pointer
- we can use the same routine for every level

4.5 Inserting into a (2, 3)-tree

- Step 3, works in phases; one phase for every level of the tree

4.5 Inserting into a (2, 3)-tree

- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

4.5 Inserting into a (2, 3)-tree

- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

Observation
We can start with phase i of round r as long as phase i of round $r-1$ and (of course), phase $i-1$ of round r has finished.

4.5 Inserting into a (2, 3)-tree

- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

Observation

We can start with phase i of round r as long as phase i of round $r-1$ and (of course), phase $i-1$ of round r has finished.

This is called Pipelining. Using this technique we can perform all rounds in Step 4 in just $\mathcal{O}(\log k+\log n)$ many parallel steps.

4.6 Symmetry Breaking

The following algorithm colors an n-node cycle with $\lceil\log n\rceil$ colors.

```
Algorithm 9 BasicColoring
    1: for \(1 \leq i \leq n\) pardo
    2: \(\quad \operatorname{col}(i) \leftarrow i\)
    3: \(\quad k_{i} \leftarrow\) smallest bitpos where \(\operatorname{col}(i)\) and \(\operatorname{col}(S(i))\) differ
    4: \(\quad \operatorname{col}^{\prime}(i) \leftarrow 2 k+\operatorname{col}(i)_{k}\)
```


4.6 Symmetry Breaking

\boldsymbol{v}	col	\boldsymbol{k}	col $^{\prime}$
1	0001	1	2
3	0011	2	4
7	0111	0	1
14	1110	2	5
2	0010	0	0
15	1111	0	1
4	0100	0	0
5	0101	0	1
6	0110	1	3
8	1000	1	2
10	1010	0	0
11	1011	0	1
12	1100	0	0
9	1001	2	4
13	1101	2	5

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$
2(t-1)+1
$$

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$
2(t-1)+1
$$

and bit-length at most

$$
\left\lceil\log _{2}(2(t-1)+1)\right\rceil
$$

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$
2(t-1)+1
$$

and bit-length at most

$$
\left\lceil\log _{2}(2(t-1)+1)\right\rceil \leq\left\lceil\log _{2}(t-1)\right\rceil+1
$$

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$
2(t-1)+1
$$

and bit-length at most

$$
\left\lceil\log _{2}(2(t-1)+1)\right\rceil \leq\left\lceil\log _{2}(t-1)\right\rceil+1 \leq\left\lceil\log _{2}(t)\right\rceil+1
$$

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$
2(t-1)+1
$$

and bit-length at most

$$
\left\lceil\log _{2}(2(t-1)+1)\right\rceil \leq\left\lceil\log _{2}(t-1)\right\rceil+1 \leq\left\lceil\log _{2}(t)\right\rceil+1
$$

Applying the algorithm repeatedly generates a constant number of colors after $\log ^{*} n$ operations.

4.6 Symmetry Breaking

As long as the bit-length $t \geq 4$ the bit-length decreases.

4.6 Symmetry Breaking

As long as the bit-length $t \geq 4$ the bit-length decreases.
Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5=2 t-1$.

4.6 Symmetry Breaking

As long as the bit-length $t \geq 4$ the bit-length decreases.
Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5=2 t-1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

```
Algorithm 10 ReColor
1: for }\ell\leftarrow5\mathrm{ to }
2: }\quad\mathrm{ for 1 
3: if col(i)=\ell then
4: }\quad\operatorname{col}(i)\leftarrow\operatorname{min}{{0,1,2}\{\operatorname{col}(P[i]),\operatorname{col}(S[i])}
```


4.6 Symmetry Breaking

As long as the bit-length $t \geq 4$ the bit-length decreases.
Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5=2 t-1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

```
Algorithm 10 ReColor
1: for }\ell\leftarrow5\mathrm{ to }
2: }\quad\mathrm{ for 1 
3: if col}(i)=\ell\mathrm{ then
4: }\quad\operatorname{col}(i)\leftarrow\operatorname{min}{{0,1,2}\{\operatorname{col}(P[i]),\operatorname{col}(S[i])}
```

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.

4.6 Symmetry Breaking

Lemma 7

We can color vertices in a ring with three colors in $\mathcal{O}\left(\log ^{*} n\right)$ time and with $\mathcal{O}\left(n \log ^{*} n\right)$ work.
not work optimal

4.6 Symmetry Breaking

Lemma 8
Given n integers in the range $0, \ldots, \mathcal{O}(\log n)$, there is an algorithm that sorts these numbers in $\mathcal{O}(\log n)$ time using a linear number of operations.

Proof: Exercise!

4.6 Symmetry Breaking

$$
\begin{aligned}
& \text { Algorithm } 11 \text { OptColor } \\
& \hline \text { 1: for } 1 \leq i \leq n \text { pardo } \\
& \text { 2: } \quad \operatorname{col}(i) \leftarrow i \\
& \text { 3: apply BasicColoring once } \\
& \text { 4: sort vertices by colors } \\
& \text { 5: for } \ell=2\lceil\log n\rceil \text { to } 3 \text { do } \\
& \text { 6: } \quad \text { for all vertices } i \text { of color } \ell \text { pardo } \\
& \text { 7: } \quad \operatorname{col}(i) \leftarrow \min \{\{0,1,2\} \backslash\{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}
\end{aligned}
$$

Lemma 9

A ring can be colored with 3 colors in time $\mathcal{O}(\log n)$ and with work $\mathcal{O}(n)$.
work optimal but not too fast

