Parallel Algorithms

Due date: December 3rd, 2013 before class!

Problem 1 (10 Points)

Given a set of positive integers x_1, \ldots, x_n stored in the first *n* cells of the global memory of an arbitrary CRCW PRAM, the *element distinctness problem* is to determine whether there exist $i \neq j$ such that $x_i = x_j$. Show how to solve this problem in $\mathcal{O}(1)$ time, using *n* processors.

Hint: Exploit the fact that the x_i 's are positive integers.

Problem 2 (10 Points)

Consider the computation of x^n , where x is an input data stored in a location of the global memory.

- 1. Show that x^n can be computed in one step on the ideal PRAM model.
- 2. Show that $\Omega(\log n)$ steps are required by the standard arithmetic CREW PRAM. Assume that each step consists of a read instruction, or a write instruction, or an arithmetic operation from $\{+, -, \times, \div\}$.

Hint: Show that any function computed at the kth step is of degree $\leq 2^k$.

Problem 3 (10 Points)

The purpose of this exercise is to show that the Boolean OR function of n variables can be computed by an n-processor CREW PRAM in $\leq \log_{2.618} n + \mathcal{O}(1)$ steps, which is less than $\log_2 n$.

Let the input bits x_1, \ldots, x_n be stored in $M(1), \ldots, M(n)$ of the global memory, and let $n = F_{2T+1}$, where F_i is the *i*th Fibonacci number with $F_0 = 0$, $F_1 = 1$, and $F_{m+2} = F_{m+1} + F_m$ for $m \ge 0$. Each processor P_i uses two variables y_i and t, initially set to 0. The algorithm executed by P_i is the following:

- if $i + F_{2t} \leq n$ then $y_i \leftarrow y_i + M(i + F_{2t})$
- if $(i > F_{2t+1} and y_i = 1)$ then $M(i F_{2t+1}) \leftarrow 1$
- 1. Show that, just before step t, we have $y_i = x_i + x_{i+1} + \dots + x_{i+F_{2t-1}}$ and $M(i) = x_i + x_{i+1} + \dots + x_{i+F_{2t+1}-1}$ for $1 \le i \le n$.
- 2. Deduce that the algorithm uses at most $\log_{2.618} n + \mathcal{O}(1)$ steps.