Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Harald Räcke Chris Pinkau

Parallel Algorithms

Due date: February 4th, 2014 before class!

Problem 1 (10 Points)

Consider the complete bipartite graph $K_{2,3}$ and its shortest path metric d. Show that this metric are not ℓ_1 -embeddable. Exploit the correspondence between ℓ_1 -metrics and cuts. Show that distributions over cuts cannot generate the correct distances by differentiating between pairs that are at distance 1 (short distances) and at distance 2 (long distances), respectively.

Problem 2 (20 Points)

An expander graph G = (V, E) has the property that the number of edges in any cut is some constant factor times the smaller side of the cut; i.e., there is some constant $\alpha > 0$ such that for any $S \subseteq V$ such that $|S| \leq |V|/2$, $|\delta(S)| \geq \alpha |S|$. There exist expanders such that every vertex in G has degree three.

- 1. Given an expander G = (V, E) with $c_e = 1$ for all $e \in E$, an (s_i, t_i) pair for each $j, k \in V$ with $j \neq k$ and $D_i = 1$ for all i, show that the sparsest cut has value at least $\Omega(1/n)$.
- 2. Let G be an expander such that every vertex has degree three. Let (V, d) be the shortest path distance in G; i.e., d_{uv} is the shortest path from u to v in G in which every edge has length 1. Show that for any vertex v, there are at most n/4 vertices u such that $d_{uv} \leq \log n 3$.
- 3. Given the graph and distance metric from the previous part, show that

$$\frac{\sum_{(u,v)\in E} d_{uv}}{\sum_{u,v\in V: u\neq v} d_{uv}} = \mathcal{O}\left(\frac{1}{n\log n}\right).$$

4. Using the parts above, show that any expander with every vertex having degree three cannot be embedded into ℓ_1 with distortion less than $\Omega(\log n)$.