
3.2 Construction of Minimal DFAs

Theorem 21
For a given regular language L, let A be the DFA constructed according to the
Myhill-Nerode theorem. Then A has, among all DFAs for L, a minimal number of
states.

Proof.
Let A = (Q,Σ, δ, q0, F) mit L(A) = L. Then

x ≡A y :⇔ δ̂(q0, x) = δ̂(q0, y)

defines an equivalence relation which refines ≡L.
Thus: |Q| = index(≡A) ≥ index(≡L) = number of states of the Myhill-Nerode
automaton.

AFS 3.2 Construction of Minimal DFAs 63/431
c©je/ewm

Algorithm for Constructing a Minimal DFA

Input: A(Q,Σ, δ, q0, F) DFA (L = L(A))

Output: equivalence relation on Q.

0 ensure that A is in normal form

1 mark all pairs {qi, qj} ∈ Q2 with

qi ∈ F and qj /∈ F resp. qi /∈ F and qj ∈ F .

AFS 3.2 Construction of Minimal DFAs 64/431
c©je/ewm

2 for all unmarked pairs {qi, qj} ∈ Q2, qi 6= qj do
if (∃a ∈ Σ)[{δ(qi, a), δ(qj , a)} is marked] then

mark {qi, qj};
for all {q, q′} in {qi, qj}’s list do

mark {q, q′} and remove it from list;
do this recursively for all pairs in the list of {q, q′}, and so on.

od
else

for all a ∈ Σ do
if δ(qi, a) 6= δ(qj , a) then

enter {qi, qj} into the list of {δ(qi, a), δ(qj , a)}
fi

od
fi

od

3 Output: q equivalent to q′ ⇔ {q, q′} not marked.

AFS 3.2 Construction of Minimal DFAs 65/431
c©je/ewm

Theorem 22
The above algorithm constructs a minimal DFA for L(A).

Proof.
Let A′ = (Q′,Σ′, δ′, q′0, F

′) be the DFA constructed using the equivalence classes
determined by the algorithm.
Obviously L(A) = L(A′).
We have: {q, q′} becomes marked iff

(∃w ∈ Σ∗)[δ̂(q, w) ∈ F ∧ δ̂(q′, w) /∈ F or vice versa],

as can be seen by a simple induction on |w|.
Thus: The number of states of A′ (viz., |Q′|) equals the index of ≡L.

AFS 3.2 Construction of Minimal DFAs 66/431
c©je/ewm

Example 23

automaton A:

q0 q1

q2 q3

q4 q5

0

0

1 1

0 1

1 0

1

0 0, 1

q0 q1 q2 q3 q4 q5
q0 / / / / / /

q1 / / / / /

q2 × × / / / /

q3 × × / / /

q4 × × / /

q5 × × × × × /

automaton A′:

L(A′) = 0∗10∗ q0q1 q2q3q4 q5

0

1

0

1

0, 1

AFS 3.2 Construction of Minimal DFAs 67/431
c©je/ewm

Theorem 24
Let A = (Q,Σ, δ, q0, F) be a DFA. Then the running time for the above minimization
algorithm is O(|Q|2|Σ|).

Proof.
For each a ∈ Σ, each position in the table is visited only a constant number of
times.

AFS 3.2 Construction of Minimal DFAs 68/431
c©je/ewm

Remark:

The above minimization algorithm

starts with a very coarse partition of the state set Q, containing ≡L

splits a class of the partition whenever it has to

does this as long as any further splitting might be possible

finally forms the quotient automaton defined by the final partition of Q (which is
a coarsening of ≡A)

AFS 3.2 Construction of Minimal DFAs 69/431
c©je/ewm

3.3 Minimizing NFAs

We first observe that a minimal NFA need not be unique (unlike the situation for
DFAs):

a

a a

a

AFS 3.3 Minimizing NFAs 70/431
c©je/ewm

Minimal NFAs are hard to compute:

Theorem 25
The following decision problem is PSPACE-complete: given an NFA A and a number
k ≥ 1, is there an NFA with at most k states which is equivalent to A.

No proof.

AFS 3.3 Minimizing NFAs 71/431
c©je/ewm

However, quite often we can still compute a partition of the state set Q of a given
NFA which leads to a reduction of the number of states.

Example 263.3. REDUCING NFAS 61

a a a a

6

a, b

a a a a

a, ba, b

a, b a, b a, b

a

a a

a a

a

a

a

a

a

a a

aa

1 2

7

1211 13

8

4

9

14 15

10

53

{2, 7, 12}
(a, {4, 8})

{7, 12} {2}

(b, {6, 11})

{6, 11}

{6} {11}

{1, . . . , 8, 11, 12, 13}
(a, {15})

{1, . . . , 14}

{9, 10, 14}
(a, {9, 10, 14})

{15}

(a, {3, 4, 5, 8, 13})

{1, 2, 6, 7, 11, 12}

{1, 6, 11}
(a, {4, 8})

{1}

{3, 4, 5, 8, 13}

(b, {3, 4, 5, 8, 13})

{4, 8} {3, 5, 13}
(a, {4, 8})

{3} {5, 13}

Figure 3.6: An NFA and a run of CSR() on it.

AFS 3.3 Minimizing NFAs 72/431
c©je/ewm

Constructing the quotient automaton, we obtain

62 CHAPTER 3. MINIMIZATION AND REDUCTION

a, b

a

a

a

a, b

a

a, b a, b

a, b

a
a

a

a

a

a

a
aa

a a

Figure 3.7: The quotient of the NFA of Figure 3.6.
AFS 3.3 Minimizing NFAs 73/431
c©je/ewm

AFS 3.3 Minimizing NFAs 74/431
c©je/ewm

AFS 3.3 Minimizing NFAs 75/431
c©je/ewm

AFS 3.3 Minimizing NFAs 76/431
c©je/ewm

AFS 3.3 Minimizing NFAs 77/431
c©je/ewm

AFS 3.3 Minimizing NFAs 78/431
c©je/ewm

It is not hard to see that the construction given above results in an NFA which is
equivalent to the original NFA.

However:
The result might not be minimal:

3.4. A CHARACTERIZATION OF THE REGULAR LANGUAGES 63

In this example we have CSR , P`. For instance, states 3 and 5 recognize the same language,
namely (a + b)∗aa(a + b)∗, but they belong to different blocks of CSR.

The quotient automaton is shown in Figure 3.7.

We finish the section with a remark.

Remark 3.23 If A is an NFA, then A/P` may not be a minimal NFA for L. The NFA of Figure 3.8
is an example: all states accept different languages, and so A/P` = A, but the NFA is not minimal,
since, for instance, the state at the bottom can be removed without changing the language.

a

a b

a, b

Figure 3.8: An NFA A such that A/P` is not minimal.

It is not difficult to show that if two states q1, q2 belong to the same block of CSR, then they not
only recognize the same language, but also satisfy the following far stronger property: for every
a ∈ Σ and for every q′1 ∈ δ(q1, a), there exists q′2 ∈ δ(q2, a) such that L(q′1) = L(q′2). This can
be used to show that two states belong to different blocks of CSR. For instance, consider states 2
and 3 of the NFA on the left of Figure 3.9. They recognize the same language, but state 2 has a
c-successor, namely state 4, that recognizes {d}, while state 3 has no such successor. So states 2
and 3 belong to different blocks of CSR. A possible run of of the CSR algorithm on this NFA is
shown on the right of the figure. For this NFA, CSR has as many blocks as states.

3.4 A Characterization of the Regular Languages

We present a useful byproduct of the results of Section 3.1.

Theorem 3.24 A language L is regular iff it has finitely many residuals.

Proof: If L is not regular, then no DFA recognizes it. Since, by Proposition 3.6, the canonical
automaton CL recognizes L, then CL necessarily has infinitely many states, and so L has infinitely
many residuals.

If L is regular, then some DFA A recognizes it. By Lemma 3.3, the number of states of A is
greater than or equal to the number of residuals of L, and so L has finitely many residuals.

or

AFS 3.3 Minimizing NFAs 79/431
c©je/ewm

The result is finer than the language partition:
64 CHAPTER 3. MINIMIZATION AND REDUCTION

{1, 3}
(b, {1, 3})

{1} {3}

(c, {5})

{1, 2, 3}

{2}

{1, 2, 3, 5}
(e, {7})

{5}

{4, 6}
(e, {7})

{4} {6}

c

d, e

c

c d

ea

b

1

2

3

5

6

7

4 (d, {7})

{1, . . . , 6} {7}

Figure 3.9: An NFA such that CSR , P`.

This theorem provides a useful technique for proving that a given language L ⊆ Σ∗ is not regular:
exhibit an infinite set of words W ⊆ Σ∗ with pairwise different residuals, i.e., W must satisfy
Lw , Lv for every two distinct words w, v ∈ W. Let us apply the technique to some typical
examples.

• {anbn | n ≥ 0} is not regular. Let W = {ak | k ≥ 0}. For every two distinct words ai, a j ∈ W
(i.e., i , j), we have bi ∈ Lai

but bi < La j
.

• {ww | w ∈ Σ∗} is not regular. Let W = Σ∗. For every two distinct words w, v ∈ W (i.e., w , v),
we have w ∈ Lw but w < Lv.

• {an2 | n ≥ 0}. Let W = {an2 | n ≥ 0} (W = L in this case). For every two distinct
words ai2 , a j2 ∈ W (i.e., i , j), we have that a2i+i belongs to the ai2-residual of L, because
ai2+2i+1 = a(i+1)2

, but not to the a j2-residual, because a j2+2i+1 is only a square number for
i = j.

Exercises

Exercise 18 Consider the most-significant-bit-first encoding (msbf encoding) of natural numbers
over the alphabet Σ = {0, 1}. Recall that every number has infinitely many encodings, because
all the words of 0 ∗ w encode the same number as w. Construct the minimal DFAs accepting the
following languages.

• {w | msbf−1(w) mod 3 = 0} ∩ Σ4.

• {w | msbf−1(w) is a prime } ∩ Σ4.

AFS 3.3 Minimizing NFAs 80/431
c©je/ewm

