3.2 Construction of Minimal DFAs

Theorem 21
For a given regular language L, let A be the DFA constructed according to the Myhill-Nerode theorem. Then A has, among all DFAs for L, a minimal number of states.

Proof.
Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ mit $L(A)=L$. Then

$$
x \equiv_{A} y: \Leftrightarrow \hat{\delta}\left(q_{0}, x\right)=\hat{\delta}\left(q_{0}, y\right)
$$

defines an equivalence relation which refines \equiv_{L}.
Thus: $|Q|=\operatorname{index}\left(\equiv_{A}\right) \geq \operatorname{index}\left(\equiv_{L}\right)=$ number of states of the Myhill-Nerode automaton.

Algorithm for Constructing a Minimal DFA

Input: $A\left(Q, \Sigma, \delta, q_{0}, F\right)$ DFA $\quad(L=L(A))$
Output: equivalence relation on Q.
(0) ensure that A is in normal form
(1) mark all pairs $\left\{q_{i}, q_{j}\right\} \in Q^{2}$ with

$$
q_{i} \in F \text { and } q_{j} \notin F \text { resp. } q_{i} \notin F \text { and } q_{j} \in F .
$$

(2) for all unmarked pairs $\left\{q_{i}, q_{j}\right\} \in Q^{2}, q_{i} \neq q_{j}$ do
if $(\exists a \in \Sigma)\left[\left\{\delta\left(q_{i}, a\right), \delta\left(q_{j}, a\right)\right\}\right.$ is marked] then mark $\left\{q_{i}, q_{j}\right\}$;
for all $\left\{q, q^{\prime}\right\}$ in $\left\{q_{i}, q_{j}\right\}$'s list do
mark $\left\{q, q^{\prime}\right\}$ and remove it from list;
do this recursively for all pairs in the list of $\left\{q, q^{\prime}\right\}$, and so on.
od
else

$$
\text { for all } a \in \Sigma \text { do }
$$

if $\delta\left(q_{i}, a\right) \neq \delta\left(q_{j}, a\right)$ then enter $\left\{q_{i}, q_{j}\right\}$ into the list of $\left\{\delta\left(q_{i}, a\right), \delta\left(q_{j}, a\right)\right\}$
fi od
fi
od
(3) Output: q equivalent to $q^{\prime} \Leftrightarrow\left\{q, q^{\prime}\right\}$ not marked.

Theorem 22
The above algorithm constructs a minimal DFA for $L(A)$.

Proof.
Let $A^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ be the DFA constructed using the equivalence classes determined by the algorithm.
Obviously $L(A)=L\left(A^{\prime}\right)$.
We have: $\left\{q, q^{\prime}\right\}$ becomes marked iff

$$
\left(\exists w \in \Sigma^{*}\right)\left[\hat{\delta}(q, w) \in F \wedge \hat{\delta}\left(q^{\prime}, w\right) \notin F \text { or vice versa }\right]
$$

as can be seen by a simple induction on $|w|$.
Thus: The number of states of $A^{\prime}\left(\right.$ viz., $\left.\left|Q^{\prime}\right|\right)$ equals the index of \equiv_{L}.

Example 23

```
automaton \(A\) :
```


	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}
q_{0}	$/$	$/$	$/$	$/$	$/$	$/$
q_{1}		$/$	$/$	$/$	$/$	$/$
q_{2}	\times	\times	$/$	$/$	$/$	$/$
q_{3}	\times	\times		$/$	$/$	$/$
q_{4}	\times	\times			$/$	$/$
q_{5}	\times	\times	\times	\times	\times	$/$

automaton A^{\prime} :
$L\left(A^{\prime}\right)=0^{*} 10^{*}$

Theorem 24
Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. Then the running time for the above minimization algorithm is $O\left(|Q|^{2}|\Sigma|\right)$.

Proof.
For each $a \in \Sigma$, each position in the table is visited only a constant number of times.

Remark:

The above minimization algorithm

- starts with a very coarse partition of the state set Q, containing \equiv_{L}
- splits a class of the partition whenever it has to
- does this as long as any further splitting might be possible
- finally forms the quotient automaton defined by the final partition of Q (which is a coarsening of \equiv_{A})

3.3 Minimizing NFAs

We first observe that a minimal NFA need not be unique (unlike the situation for DFAs):

Minimal NFAs are hard to compute:

Theorem 25
The following decision problem is PSPACE-complete: given an NFA A and a number $k \geq 1$, is there an NFA with at most k states which is equivalent to A.

No proof.

However, quite often we can still compute a partition of the state set Q of a given NFA which leads to a reduction of the number of states.

Example 26

Constructing the quotient automaton, we obtain

3.3 Minimizing NFAs

What is a „suitable" partition?

- The quotient w.r.t. the partition must recognize the same language as the original NFA.
- So, by the Lemma, we can take any partition that refines the language partition.
- A partition refines the language partition iff states in the same block recognize the same language (states in different blocks may not recognize different langauges, though!).
- Such partitions necessarily refine the partition $\{F, Q \backslash F\}$.

Computing a suitable partition

- Idea: use the same algorithm as for DFA, but with new notions of unstable block and block splitting.
- We must guarantee:
after termination, states of a block
recognize the same language
or, equivalently
after termination, states recognizing
different languages belong to different blocks

Key observation:

If $L\left(q_{1}\right) \neq L\left(q_{2}\right)$ then either

- one of q_{1}, q_{2} is final and the other non-final, or
- one of q_{1}, q_{2}, say q_{1}, has a transition $q_{1} \xrightarrow{\mathrm{a}} q_{1}^{\prime}$ such that every a-transition $q_{2} \xrightarrow{\mathrm{a}} q_{2}^{\prime}$ satisfies: $L\left(q_{1}^{\prime}\right) \neq L\left(q_{2}^{\prime}\right)$.

This suggests the following definition:

Definition: Let B, B^{\prime} blocks of a partition P , and let $a \in \Sigma$. The pair (a, B^{\prime}) splits B if there are states $q_{1}, q_{2} \in B$ such that

$$
\delta\left(q_{1}, a\right) \cap B^{\prime}=\varnothing \quad \text { and } \quad \delta\left(q_{2}, a\right) \cap B^{\prime} \neq \varnothing
$$

The result of the split is the partition

$$
\operatorname{Re} f_{P}^{N F A}[B, a, B]=(P \backslash\{B\}) \cup\left\{B_{0}, B_{1}\right\}
$$

where

$$
\begin{aligned}
& B_{0}=\left\{q \in B \mid \delta(q, a) \cap B^{\prime}=\emptyset\right\} \\
& B_{1}=\left\{q \in B \mid \delta(q, a) \cap B^{\prime} \neq \emptyset\right\}
\end{aligned}
$$

A partition is unstable if there are B, a, B^{\prime} such that (a, B^{\prime}) splits B, otherwise it is stable.
$\operatorname{CSR}(A)$
Input: NFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: The partition CSR.
1 if $F=\emptyset$ or $Q \backslash F=\emptyset$ then return $\{Q\}$
$2 \quad$ else $P \leftarrow\{F, Q \backslash F\}$
3 while P is unstable do
$4 \quad$ pick $B, B^{\prime} \in P$ and $a \in \Sigma$ such that (a, B^{\prime}) splits B
$5 \quad P \leftarrow \operatorname{Re} f_{P}^{N F A}\left[B, a, B^{\prime}\right]$
6 return P

It is not hard to see that the construction given above results in an NFA which is equivalent to the original NFA.

However:
The result might not be minimal:

or

The result is finer than the language partition:

