3.2 Construction of Minimal DFAs

Theorem 21

For a given regular language L, let A be the DFA constructed according to the Myhill-Nerode theorem. Then A has, among all DFAs for L, a minimal number of states.

Proof. $(O \sum \delta a)$

Let $A = (Q, \Sigma, \delta, q_0, F)$ mit L(A) = L. Then

$$x \equiv_A y :\Leftrightarrow \hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$$

defines an equivalence relation which refines \equiv_L . Thus: $|Q| = index(\equiv_A) \ge index(\equiv_L) = number of states of the Myhill-Nerode automaton.$

Algorithm for Constructing a Minimal DFA

 ${\rm Input:} \ A(Q,\Sigma,\delta,q_0,F) \ {\rm DFA} \quad \ (L=L(A))$

Output: equivalence relation on Q.

- ${f 0}$ ensure that A is in normal form
- **1** mark all pairs $\{q_i, q_j\} \in Q^2$ with

 $q_i \in F$ and $q_j \notin F$ resp. $q_i \notin F$ and $q_j \in F$.

2 for all unmarked pairs $\{q_i, q_j\} \in Q^2, q_i \neq q_j$ do **if** $(\exists a \in \Sigma)[\{\delta(q_i, a), \delta(q_j, a)\}$ is marked] **then**mark $\{q_i, q_j\}$; **for** all $\{q, q'\}$ in $\{q_i, q_j\}$'s list **do**mark $\{q, q'\}$ and remove it from list;
do this recursively for all pairs in the list of $\{q, q'\}$, and so on. **od else for** all $a \in \Sigma$ **do if** $\delta(q_i, a) \neq \delta(q_j, a)$ **then**

if $\delta(q_i, a) \neq \delta(q_j, a)$ then enter $\{q_i, q_j\}$ into the list of $\{\delta(q_i, a), \delta(q_j, a)\}$ fi od fi od § Output: q equivalent to $q' \Leftrightarrow \{q, q'\}$ not marked.

Theorem 22

The above algorithm constructs a minimal DFA for L(A).

Proof.

Let $A'=(Q',\Sigma',\delta',q_0',F')$ be the DFA constructed using the equivalence classes determined by the algorithm.

Obviously L(A) = L(A').

We have: $\{q, q'\}$ becomes marked iff

$$(\exists w \in \Sigma^*) [\hat{\delta}(q, w) \in F \land \hat{\delta}(q', w) \notin F \text{ or vice versa}],$$

as can be seen by a simple induction on |w|. Thus: The number of states of A' (viz., |Q'|) equals the index of \equiv_L .

Example 23

automaton A:

	q_0	q_1	q_2	q_3	q_4	q_5
q_0	/	/	/	/	/	/
q_1		/	/	/	/	/
q_2	×	X	/	/	/	/
q_3	×	X		/	/	/
q_4	×	X			/	/
q_5	×	×	×	×	×	/

automaton A': $L(A') = 0^* 10^*$

Theorem 24

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Then the running time for the above minimization algorithm is $O(|Q|^2 |\Sigma|)$.

Proof.

For each $a\in\Sigma,$ each position in the table is visited only a constant number of times.

Remark:

The above minimization algorithm

- starts with a very coarse partition of the state set Q, containing \equiv_L
- splits a class of the partition whenever it has to
- does this as long as any further splitting might be possible
- finally forms the quotient automaton defined by the final partition of Q (which is a coarsening of \equiv_A)

3.3 Minimizing NFAs

We first observe that a minimal NFA need not be unique (unlike the situation for DFAs):

Minimal NFAs are hard to compute:

Theorem 25

The following decision problem is PSPACE-complete: given an NFA A and a number $k \ge 1$, is there an NFA with at most k states which is equivalent to A.

No proof.

However, quite often we can still compute a partition of the state set Q of a given NFA which leads to a reduction of the number of states.

Example 26

3.3 Minimizing NFAs

Constructing the quotient automaton, we obtain

3.3 Minimizing NFAs

What is a "suitable" partition?

- The quotient w.r.t. the partition must recognize the same language as the original NFA.
- So, by the Lemma, we can take any partition that refines the language partition.
- A partition refines the language partition iff states in the same block recognize the same language (states in different blocks may not recognize different langauges, though!).
- Such partitions necessarily refine the partition $\{F, Q \setminus F\}$.

Computing a suitable partition

- Idea: use the same algorithm as for DFA, but with new notions of unstable block and block splitting.
- We must guarantee:

after termination, states of a block recognize the same language

or, equivalently

after termination, states recognizing different languages belong to different blocks

Key observation:

- If $L(q_1) \neq L(q_2)$ then either - one of q_1, q_2 is final and the other non-final, or
 - one of q_1, q_2 , say q_1 , has a transition $q_1 \xrightarrow{a} q'_1$ such that every *a*-transition $q_2 \xrightarrow{a} q'_2$ satisfies: $L(q'_1) \neq L(q'_2)$.

This suggests the following definition:

Definition: Let B, B' blocks of a partition P, and let $a \in \Sigma$. The pair (a, B') splits B if there are states $q_1, q_2 \in B$ such that

$$\begin{split} \delta(q_1, a) \cap B' &= \emptyset \quad \text{and} \quad \delta(q_2, a) \cap B' \neq \emptyset \\ \text{The result of the split is the partition} \\ Ref_P^{NFA}[B, a, B] &= (P \setminus \{B\}) \cup \{B_0, B_1\} \end{split}$$

where

$$B_0 = \{q \in B \mid \delta(q, a) \cap B' = \emptyset\}$$

$$B_1 = \{q \in B \mid \delta(q, a) \cap B' \neq \emptyset\}$$

A partition is unstable if there are B, a, B' such that (a, B') splits B, otherwise it is stable.

CSR(A)Input: NFA $A = (Q, \Sigma, \delta, q_0, F)$ Output: The partition *CSR*.

1 **if** $F = \emptyset$ or $Q \setminus F = \emptyset$ **then return** $\{Q\}$

2 else
$$P \leftarrow \{F, Q \setminus F\}$$

4 pick $B, B' \in P$ and $a \in \Sigma$ such that (a, B') splits B

5
$$P \leftarrow Ref_P^{NFA}[B, a, B']$$

6 return P

It is not hard to see that the construction given above results in an NFA which is equivalent to the original NFA.

However:

The result might not be minimal:

or

The result is finer than the language partition:

