4. Implementing operations on sets using finite automata

4.1 Implementation using DFAs

Recall:

$\operatorname{Member}(x, X)$	$:$	returns true if $x \in X$, false otherwise
Complement (X)	$:$	returns $U \backslash X$
Intersection (X, Y)	$:$	returns $X \cap Y$
Union (X, Y)	$:$	returns $X \cup Y$
Empty (X)	$:$	returns true if $X=\emptyset$, false otherwise
Universal (X)	$:$	returns true if $X=U$, false otherwise
Included (X, Y)	$:$	returns true if $X \subseteq Y$, false otherwise
Equal (X, Y)	$:$	returns true if $X=Y$, false otherwise

We assume that each object (input, automaton, etc.) is encoded by one word.

We observe:

$$
\begin{array}{ll}
\text { Membership } & : \\
& \text { trivial, linear for fixed automaton } \\
\text { Complement } & : \\
\text { trivial, swap final and non-final states } \\
& \text { linear (or even constant) time }
\end{array}
$$

Also consider these set operations:

$$
\begin{array}{lll}
\text { Intersection }(X, Y) & : & \text { returns } X \cap Y \\
\text { Union }(X, Y) & : & \text { returns } X \cup Y \\
\text { SetDifference }(X, Y) & : & \text { returns } X \backslash Y \\
\text { SymmetricSetDifference }(X, Y) & : & \text { returns } X \triangle Y \\
\text { Op }(X, Y, Z) & : & \text { returns }(X \cup Y) \backslash Z
\end{array}
$$

The product construction or pairing for DFAs

Two DFAs run synchronously in parallel, an input word is accepted iff both automata accept it.

Theorem 27
Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$ be two DFAs. Then the product automaton or pairing $M=\left[M_{1}, M_{2}\right]$ of M_{1} and M_{2}, defined by

$$
M:=\left(Q_{1} \times Q_{2}, \Sigma, \delta,\left(s_{1}, s_{2}\right), F_{1} \times F_{2}\right)
$$

with $\delta\left(\left(q_{1}, q_{2}\right), a\right):=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)$ for all $q_{1} \in Q_{1}, q_{2} \in Q_{2}$ and $a \in \Sigma$, is a DFA recognizing $L\left(M_{1}\right) \cap L\left(M_{2}\right)$.

Proof.

Induction on $|w|$. We have:

$$
\begin{aligned}
w \in L(M) & \Leftrightarrow \hat{\delta}\left(\left(s_{1}, s_{2}\right), w\right) \in F_{1} \times F_{2} \\
& \Leftrightarrow\left(\hat{\delta}_{1}\left(s_{1}, w\right), \hat{\delta}_{2}\left(s_{2}, w\right)\right) \in F_{1} \times F_{2} \\
& \Leftrightarrow \hat{\delta}_{1}\left(s_{1}, w\right) \in F_{1} \wedge \hat{\delta}_{2}\left(s_{2}, w\right) \in F_{2} \\
& \Leftrightarrow w \in L\left(M_{1}\right) \wedge w \in L\left(M_{2}\right) \\
& \Leftrightarrow w \in L\left(M_{1}\right) \cap L\left(M_{2}\right) .
\end{aligned}
$$

Question: Does the pairing construction (for intersection) also work for NFAs?

Definition 28
The reversal(mirror) of a word $w=a_{1} \cdots a_{n}$ is

$$
w^{R}:=a_{n} \cdots a_{1} .
$$

The reversal of a language L is

$$
L^{R}:=\left\{w^{R} ; w \in L\right\}
$$

Theorem 29
If L is a regular language, so is L^{R}.

Proof.

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA with $L=L(M)$. We construct an ϵ-NFA $N=\left(Q \uplus\left\{q_{0}^{\prime}\right\}, \Sigma, \delta^{\prime}, q_{0}^{\prime},\left\{q_{0}\right\}\right)$ as follows:

- we reverse all state transitions, i.e., $\delta(q, a)=p$ iff $q \in \delta^{\prime}(p)$;
- we create the new start state q_{0}^{\prime} of N, with ϵ-transitions to all $f \in F$;
- q_{0} becomes the (only) final state of N.

Following the state transitions of M on some arbitrary input $w \in \Sigma^{*}$ backwards, we easily see that

$$
L(N)=L^{R}
$$

A generic algorithm

$$
L_{1} \widehat{\odot} L_{2}=\left\{w \in \Sigma^{*} \mid\left(w \in L_{1}\right) \odot\left(w \in L_{2}\right)\right\}
$$

Language operation	$b_{1} \odot b_{2}$
Union	$b_{1} \vee b_{2}$
Intersection	$b_{1} \wedge b_{2}$
Set difference $\left(L_{1} \backslash L_{2}\right)$	$b_{1} \wedge \neg b_{2}$
Symmetric difference $\left(L_{1} \backslash L_{2} \cup L_{2} \backslash L_{1}\right)$	$b_{1} \Leftrightarrow \neg b_{2}$

```
\(\mathrm{BinOp}[\odot]\left(A_{1}, A_{2}\right)\)
Input: DFAs \(A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right), A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)\)
Output: DFA \(A=\left(Q, \Sigma, \delta, q_{0}, F\right)\) with \(\left.\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \widehat{\odot} \mathcal{L}\left(A_{2}\right)\right)\)
    \(Q \leftarrow \emptyset ; F \leftarrow \emptyset\)
    \(q_{0} \leftarrow\left[q_{01}, q_{02}\right]\)
    \(W \leftarrow\left\{q_{0}\right\}\)
    while \(W \neq \emptyset\) do
        pick \(\left[q_{1}, q_{2}\right]\) from \(W\)
        add \(\left[q_{1}, q_{2}\right]\) to \(Q\)
        if \(\left(q_{1} \in F_{1}\right) \odot\left(q_{2} \in F_{2}\right)\) then add \(\left[q_{1}, q_{2}\right]\) to \(F\)
        for all \(a \in \Sigma\) do
            \(q_{1}^{\prime} \leftarrow \delta_{1}\left(q_{1}, a\right) ; q_{2}^{\prime} \leftarrow \delta_{2}\left(q_{2}, a\right)\)
            if \(\left[q_{1}^{\prime}, q_{2}^{\prime}\right] \notin Q\) then add \(\left[q_{1}^{\prime}, q_{2}^{\prime}\right]\) to \(W\)
            add \(\left(\left[q_{1}, q_{2}\right], a,\left[q_{1}^{\prime}, q_{2}^{\prime}\right]\right)\) to \(\delta\)
    return \(\left(Q, \Sigma, \delta, q_{0}, F\right)\)
```


Observation:

- The product automaton/pairing of two DFAs with n_{1} resp. n_{2} states has (in normal form) $O\left(n_{1} \cdot n_{2}\right)$ states.
- Hence, for DFAs with n_{1} resp. n_{2} states and an alphabet Σ with k letters, the operations union, intersection, etc. can be carried out in $O\left(k \cdot n_{1} \cdot n_{2}\right)$ time.

Language tests

Let A, A_{1}, and A_{2} be DFAs, with $L=L(A), L_{1}=L\left(A_{1}\right)$, and $L_{2}=L\left(A_{2}\right)$ the languages recognized by them, respectively. Note that we assume that all these automata are in normal form!
Then we have

- Emptiness: L is empty iff A has no final states.
- Universality: $L=\Sigma^{*}$ iff A has only final states.
- Inclusion: $L_{1} \subseteq L_{2}$ iff $L_{1} \backslash L_{2}=\emptyset$.
- Equality: $L_{1}=L_{2}$ iff $L_{1} \Delta L_{2}=\emptyset$.

```
InclDFA(A , , A 2)
Input: DFAs }\mp@subsup{A}{1}{}=(\mp@subsup{Q}{1}{},\Sigma,\mp@subsup{\delta}{1}{},\mp@subsup{q}{01}{},\mp@subsup{F}{1}{}),\mp@subsup{A}{2}{}=(\mp@subsup{Q}{2}{},\Sigma,\mp@subsup{\delta}{2}{},\mp@subsup{q}{02}{},\mp@subsup{F}{2}{}
Output: true if \mathcal{L}}(\mp@subsup{A}{1}{})\subseteq\mathcal{L}(\mp@subsup{A}{2}{})\mathrm{ , false otherwise
    1 Q
    W\leftarrow{[\mp@subsup{q}{01}{},\mp@subsup{q}{02}{}]}
    while W}=\emptyset\emptyset\mathrm{ do
        pick [q},\mp@subsup{q}{1}{},\mp@subsup{q}{2}{}]\mathrm{ from W
        add [q1, q2] to Q
        if ( }\mp@subsup{q}{1}{}\in\mp@subsup{F}{1}{})\mathrm{ and (q2& F2) then return false
        for all }a\in\Sigma\mathrm{ do
            q1
            if [\mp@subsup{q}{1}{\prime},\mp@subsup{q}{2}{\prime}]\not\inQ then add [ }\mp@subsup{q}{1}{\prime},\mp@subsup{q}{2}{\prime}]\mathrm{ to W
    return true
```


4.2 Implementation using NFAs

Recall:

$\operatorname{Member}(x, X)$	$:$	returns true if $x \in X$, false otherwise
Complement (X)	$:$	returns $U \backslash X$
Intersection (X, Y)	$:$	returns $X \cap Y$
Union (X, Y)	$:$	returns $X \cup Y$
Empty (X)	$:$	returns true if $X=\emptyset$, false otherwise
Universal (X)	$:$	returns true if $X=U$, false otherwise
Included (X, Y)	$:$	returns true if $X \subseteq Y$, false otherwise
Equal (X, Y)	$:$	returns true if $X=Y$, false otherwise

Membership

Prefix read	W
ϵ	$\left\{q_{0}\right\}$
a	$\left\{q_{2}\right\}$
$a a$	$\left\{q_{2}, q_{3}\right\}$
aaa	$\left\{q_{1}, q_{2}, q_{3}\right\}$
aaab	$\left\{q_{2}, q_{3}\right\}$
aaabb	$\left\{q_{2}, q_{3}, q_{4}\right\}$
aaabba	$\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$

$\operatorname{Mem}[A](w)$

Input: NFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$, word $w \in \Sigma^{*}$,
Output: true if $w \in \mathcal{L}(A)$, false otherwise
$1 \quad W \leftarrow\left\{q_{0}\right\} ;$

$$
\begin{aligned}
& \text { while } w \neq \varepsilon \text { do } \\
& \begin{array}{ll}
U \leftarrow \emptyset & \\
\text { for all } q \in W \text { do } & \\
\quad \text { add } \delta(q, \text { head }(w)) \text { to } U & \\
W \leftarrow U & \\
w \leftarrow \operatorname{tail}(w) & \text { Complexity: } \\
\text { return }(W \cap F \neq \emptyset) & \begin{array}{l}
\text { while loop executed }|\mathrm{w}| \text { times } \\
\text { for loop executed at most }|\mathrm{Q}| \text { times } \\
\text { each execution takes } \mathrm{O}(|\mathrm{Q}|) \text { time }
\end{array} \\
& \begin{array}{l}
\text { Overall: } \mathrm{O}(|\mathrm{w}||\mathrm{Q}| \wedge 2) \text { time }
\end{array}
\end{array}
\end{aligned}
$$

Complement:

- Swapping final and non-final states does not work.
- Solution: convert to DFA and then swap states.
- Problem: exponential blow-up of size of automaton! Hence try to avoid this whenever possible!
- However, in the worst case there is no better way: There are NFAs with n states such that any minimal NFA for their complement has $\Theta\left(2^{n}\right)$ states!

Union and intersection:

The product/pairing construction still works for union and intersection, with the same complexity, but (of course(!)) not for set difference or other non-monotonic operations.

There is a better construction for union (see a few slides down), but not for intersection.

IntersNFA $\left(A_{1}, A_{2}\right)$
Input: NFA $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right), A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)$
Output: NFA $A_{1} \cap A_{2}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with $\mathcal{L}\left(A_{1} \cap A_{2}\right)=\mathcal{L}\left(A_{1}\right) \cap \mathcal{L}\left(A_{2}\right)$

```
\(Q \leftarrow \emptyset ; F \leftarrow \emptyset\)
\(q_{0} \leftarrow\left[q_{01}, q_{02}\right]\)
\(W \leftarrow\left\{\left[q_{01}, q_{02}\right]\right\}\)
while \(W \neq \emptyset\) do
    pick \(\left[q_{1}, q_{2}\right]\) from \(W\)
    add \(\left[q_{1}, q_{2}\right]\) to \(Q\)
    if \(q_{1} \in F_{1}\) and \(q_{2} \in F_{2}\) ) then add \(\left[q_{1}, q_{2}\right]\) to \(F\)
    for all \(a \in \Sigma\) do
        for all \(q_{1}^{\prime} \in \delta_{1}\left(q_{1}, a\right), q_{2}^{\prime} \in \delta_{2}\left(q_{2}, a\right)\) do
        if \(\left[q_{1}^{\prime}, q_{2}^{\prime}\right] \notin Q\) then add \(\left[q_{1}^{\prime}, q_{2}^{\prime}\right]\) to \(W\)
        add \(\left(\left[q_{1}, q_{2}\right], a,\left[q_{1}^{\prime}, q_{2}^{\prime}\right]\right)\) to \(\delta\)
    return \(\left(Q, \Sigma, \delta, q_{0}, F\right)\)
```

For the complexity, observe that in the worst case the algorithm must examine all pairs [t_{1}, t_{2}] of transitions of $\delta_{1} \times \delta_{2}$, but every pair is examined at most once. So the runtime is $\mathcal{O}\left(\left|\delta_{1} \| \delta_{2}\right|\right)$.

