
Remarks:

1 Complement and then check for emptiness

— exponential complexity

2 Possible improvements:

— check for emptiness while complementing: on-the-fly-check
— test for subsumption

AFS 4.2 Implementation using NFAs 109/431
c©je/ewm



A Subsumption Test

We observe that, while doing the conversion to and the universality check for a DFA, it
might not be necessary to store all states.

Definition 32
Let A be a NFA, and let B = NFAtoDFA(A). A state Q′ of B is minimal if no other
state Q′′ of B satisfies Q′′ ⊂ Q′.

Lemma 33
Let A be an NFA, and let B = NFAtoDFA(A). A is universal iff every minimal state of
B is final.

AFS 4.2 Implementation using NFAs 110/431
c©je/ewm



Proof.
Since A and B recognize the same language, A is universal iff B is universal. So A is
universal iff every state of B is final. But a state of B is final iff it contains some final
state of A, and so every state of B is final iff every minimal state of B is final.

AFS 4.2 Implementation using NFAs 111/431
c©je/ewm



AFS 4.2 Implementation using NFAs 112/431
c©je/ewm



AFS 4.2 Implementation using NFAs 113/431
c©je/ewm



Can this approach be correct?

After all, removing a non-minimal state, we might be preventing the addition of other
minimal states in the future!?

AFS 4.2 Implementation using NFAs 114/431
c©je/ewm



Lemma 34
Let A = (Q,Σ, δ, q0, F ) be an NFA, and let B = NFAtoDFA(A). After termination of
UnivNFA(A), the set Q contains all minimal states of B.

AFS 4.2 Implementation using NFAs 115/431
c©je/ewm



Proof.
Assume the contrary.
Then B has a shortest path Q1 → Q2 · · ·Qn−1 → Qn such that, after termination,

Q1 ∈ Q, Qn /∈ Q
Qn is minimal

Since the path is shortest, Q2 /∈ Q, and so when UnivNFA processes Q1, it does not
add Q2. This can only be because UnivNFA already added some Q′2 ⊂ Q2.

AFS 4.2 Implementation using NFAs 116/431
c©je/ewm



Proof (cont’d):

But then B has a path Q′2 → Q′3 · · ·Q′n−1 → Q′n with Q′n ⊆ Qn. Since Qn is minimal,
Q′n = Qn and is minimal.

Thus, the path Q′2 → · · · → Q′n satisfies

Q′2 ∈ Q, and

Q′n is minimal.

This contradicts our assumption that Q1 → · · · → Qn is as short as possible.

AFS 4.2 Implementation using NFAs 117/431
c©je/ewm



Inclusion and equality

Theorem 35
The inclusion problem for NFAs is PSPACE-complete.

Proof.
If, given tw o NFAs A1 and A2, we want to test whether L(A1) ⊆ L(A2) or,
equivalently, L(A1) ∩ L(A2) = ∅. The negation of the latter can easily be checked
(using polynomial space) by guessing a word w (of length at most exponential in the
size of A1 and A2) such that w is recognized by A1 but not A2.

PSPACE-hardness on the other hand follows since an NFA A is universal iff
L(A) = Σ∗, i.e., the universality problem reduces to the inclusion problem.

AFS 4.2 Implementation using NFAs 118/431
c©je/ewm



AFS 4.2 Implementation using NFAs 119/431
c©je/ewm



Further optimization: subsumption test

Definition 36
Let A1, A2 be NFAs, and let B2 = NFAtoDFA(A2). A state [q1, Q2] of [A1, B2] is
minimal if no other state [q′1, Q

′
2] satisfies q′1 = q1 and Q′2 ⊂ Q2.

Lemma 37
LL(A1) ⊆ L(A2) iff every minimal state [q1, Q2] of [A1, B2] satisfying q1 ∈ F1 also
satisfies Q2 ∩ F2 6= ∅.

Proof.
Since A2 and B2 recognize the same language, L(A1) ⊆ L(A2) iff L(A1) ∩ L(A2) = ∅
iff L(A1) ∩ L(B2) = ∅ iff [A1, B2] has a state [q1, Q2] such that q1 ∈ F1 and
Q2 ∩ F2 = ∅. But [A1, B2] has some state satisfying this condition iff it has some
minimal state satisfying it.

AFS 4.2 Implementation using NFAs 120/431
c©je/ewm



Algorithm InclNFA(A1, A2):
Input: NFAs A1 = (Q1,Σ, δ1, q01, F1), A2 = (Q2,Σ, δ2, q02, F2)
Output: true if L(A1) ⊆ L(A2), false otherwise

Q := ∅
W := { [q01, {q02}] }
while W 6= ∅ do
pick [q1, Q2] from W
if q1 ∈ F1 and Q2 ∩ F2 = ∅ then return false fi
add [q1, Q2] to Q
for all a ∈ Σ, q′1 ∈ δ1(q1, a) do
Q′2 := δ2(Q2, a)
if W ∪Q contains no [q′′1 , Q

′′
2] s.t. q′′1 = q′1 and Q′′2 ⊆ Q′2 then

add [q′1, Q
′
2] to W

fi
return true

AFS 4.2 Implementation using NFAs 121/431
c©je/ewm



AFS 4.2 Implementation using NFAs 122/431
c©je/ewm



Important special case:

If A1 is an NFA, but A2 (already) is a DFA, then

complementing A2 is now trivial

we obtain a running time O(n21 · n2)

Remark: To check for equality, we just check inclusion in both directions. To obtain
PSPACE-hardness for equality, just observe the universality problem as above.

AFS 4.2 Implementation using NFAs 123/431
c©je/ewm




