Remarks:

(1) Complement and then check for emptiness

- exponential complexity
(2) Possible improvements:
- check for emptiness while complementing: on-the-fly-check
- test for subsumption

A Subsumption Test

We observe that, while doing the conversion to and the universality check for a DFA, it might not be necessary to store all states.

Definition 32
Let A be a NFA, and let $B=\operatorname{NFAtoDFA}(A)$. A state Q^{\prime} of B is minimal if no other state $Q^{\prime \prime}$ of B satisfies $Q^{\prime \prime} \subset Q^{\prime}$.

Lemma 33
Let A be an NFA, and let $B=N F A t o D F A(A)$. A is universal iff every minimal state of B is final.

Proof.

Since A and B recognize the same language, A is universal iff B is universal. So A is universal iff every state of B is final. But a state of B is final iff it contains some final state of A, and so every state of B is final iff every minimal state of B is final.

UnivNFA(A)
Input: NFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: true if $\mathcal{L}(A)=\Sigma^{*}$, false otherwise
$1 \quad Q \leftarrow \emptyset$;
$2 \mathcal{W} \leftarrow\left\{\left\{q_{0}\right\}\right\}$
3 while $\mathcal{W} \neq \emptyset$ do
4 pick Q^{\prime} from \mathcal{W}
5 if $Q^{\prime} \cap F=\emptyset$ then return false
6 add Q^{\prime} to Q
$7 \quad$ for all $a \in \Sigma$ do
8 if $\mathcal{W} \cup \mathcal{Q}$ contains no $Q^{\prime \prime} \subseteq \delta\left(Q^{\prime}, a\right)$ then add $\delta\left(Q^{\prime}, a\right)$ to \mathcal{W}
9 return true

Can this approach be correct?

After all, removing a non-minimal state, we might be preventing the addition of other minimal states in the future!?

Lemma 34
Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA, and let $B=\operatorname{NFAtoDFA}(A)$. After termination of $\operatorname{UnivNFA}(A)$, the set \mathcal{Q} contains all minimal states of B.

Proof.
Assume the contrary.
Then B has a shortest path $Q_{1} \rightarrow Q_{2} \cdots Q_{n-1} \rightarrow Q_{n}$ such that, after termination,

- $Q_{1} \in \mathcal{Q}, Q_{n} \notin \mathcal{Q}$
- Q_{n} is minimal

Since the path is shortest, $Q_{2} \notin \mathcal{Q}$, and so when UnivNFA processes Q_{1}, it does not add Q_{2}. This can only be because UnivNFA already added some $Q_{2}^{\prime} \subset Q_{2}$.

Proof (cont'd):
But then B has a path $Q_{2}^{\prime} \rightarrow Q_{3}^{\prime} \cdots Q_{n-1}^{\prime} \rightarrow Q_{n}^{\prime}$ with $Q_{n}^{\prime} \subseteq Q_{n}$. Since Q_{n} is minimal, $Q_{n}^{\prime}=Q_{n}$ and is minimal.

Thus, the path $Q_{2}^{\prime} \rightarrow \cdots \rightarrow Q_{n}^{\prime}$ satisfies

- $Q_{2}^{\prime} \in \mathcal{Q}$, and
- Q_{n}^{\prime} is minimal.

This contradicts our assumption that $Q_{1} \rightarrow \cdots \rightarrow Q_{n}$ is as short as possible.

Inclusion and equality

Theorem 35
The inclusion problem for NFAs is PSPACE-complete.

Proof.

If, given tw o NFAs A_{1} and A_{2}, we want to test whether $L\left(A_{1}\right) \subseteq L\left(A_{2}\right)$ or, equivalently, $L\left(A_{1}\right) \cap \overline{L\left(A_{2}\right)}=\emptyset$. The negation of the latter can easily be checked (using polynomial space) by guessing a word w (of length at most exponential in the size of A_{1} and A_{2}) such that w is recognized by A_{1} but not A_{2}.

PSPACE-hardness on the other hand follows since an NFA A is universal iff $L(A)=\Sigma^{*}$, i.e., the universality problem reduces to the inclusion problem.

- Algorithm: use $L_{1} \subseteq L_{2}$ iff $L_{1} \cap \overline{L_{2}}=\emptyset$
- Concatenate four algorithms:
(1) determinize A_{2},
(2) complement the result,
(3) intersect it with A_{1}, and
(4) check for emptiness.
- State of (3): pair (q, Q), where $q \in Q_{1}$ and $Q \subseteq Q_{2}$
- Easy optimizations:
- store only the states of (3), not its transitions;
- do not perform (1), then (2), then (3): instead, construct directly the states of (3);
- check (4) while constructing (3);

Further optimization: subsumption test

Definition 36
Let A_{1}, A_{2} be NFAs, and let $B_{2}=\operatorname{NFAtoDFA}\left(A_{2}\right)$. A state $\left[q_{1}, Q_{2}\right]$ of $\left[A_{1}, B_{2}\right]$ is minimal if no other state $\left[q_{1}^{\prime}, Q_{2}^{\prime}\right]$ satisfies $q_{1}^{\prime}=q_{1}$ and $Q_{2}^{\prime} \subset Q_{2}$.

Lemma 37
$L L\left(A_{1}\right) \subseteq L\left(A_{2}\right)$ iff every minimal state $\left[q_{1}, Q_{2}\right]$ of $\left[A_{1}, B_{2}\right]$ satisfying $q_{1} \in F_{1}$ also satisfies $Q_{2} \cap F_{2} \neq \emptyset$.

Proof.
Since A_{2} and B_{2} recognize the same language, $L\left(A_{1}\right) \subseteq L\left(A_{2}\right)$ iff $L\left(A_{1}\right) \cap \overline{L\left(A_{2}\right)}=\emptyset$ iff $L\left(A_{1}\right) \cap \overline{L\left(B_{2}\right)}=\emptyset$ iff $\left[A_{1}, B_{2}\right]$ has a state $\left[q_{1}, Q_{2}\right]$ such that $q_{1} \in F_{1}$ and $Q_{2} \cap F_{2}=\emptyset$. But $\left[A_{1}, B_{2}\right]$ has some state satisfying this condition iff it has some minimal state satisfying it.

Algorithm InclNFA $\left(A_{1}, A_{2}\right)$:
Input: NFAs $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right), A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)$
Output: true if $L\left(A_{1}\right) \subseteq L\left(A_{2}\right)$, false otherwise
$Q:=\emptyset$
$W:=\left\{\left[q_{01},\left\{q_{02}\right\}\right]\right\}$
while $W \neq \emptyset$ do
pick $\left[q_{1}, Q_{2}\right]$ from W
if $q_{1} \in F_{1}$ and $Q_{2} \cap F_{2}=\emptyset$ then return false $\mathbf{f i}$
add $\left[q_{1}, Q_{2}\right]$ to Q
for all $a \in \Sigma, q_{1}^{\prime} \in \delta_{1}\left(q_{1}, a\right)$ do
$Q_{2}^{\prime}:=\delta_{2}\left(Q_{2}, a\right)$
if $W \cup Q$ contains no $\left[q_{1}^{\prime \prime}, Q_{2}^{\prime \prime}\right]$ s.t. $q_{1}^{\prime \prime}=q_{1}^{\prime}$ and $Q_{2}^{\prime \prime} \subseteq Q_{2}^{\prime}$ then add $\left[q_{1}^{\prime}, Q_{2}^{\prime}\right]$ to W
fi
return true

- Complexity:
- Let A_{1}, A_{2} be NFAs with n_{1}, n_{2} states over an alphabet with k letters.
- Without the subsumption test:
- The while-loop is executed at most $n_{1} \cdot 2^{n_{2}}$ times.
- The for-loop is executed at most $O\left(k \cdot n_{1}\right)$ times.
- An execution of the for-loop takes $O\left(n_{2}^{2}\right)$ time.
- Overall: $O\left(k \cdot n_{1}^{2} \cdot n_{2}^{2} \cdot 2^{n_{2}}\right)$ time.
- With the subsumption case the worst-case complexity is higher. Exercise: give an upper bound.

Important special case:

If A_{1} is an NFA, but A_{2} (already) is a DFA, then

- complementing A_{2} is now trivial
- we obtain a running time $O\left(n_{1}^{2} \cdot n_{2}\right)$

Remark: To check for equality, we just check inclusion in both directions. To obtain PSPACE-hardness for equality, just observe the universality problem as above.

