Remarks:

- Omplement and then check for emptiness
 - exponential complexity
- Possible improvements:
 - check for emptiness while complementing: on-the-fly-check
 - test for subsumption

A Subsumption Test

We observe that, while doing the conversion to and the universality check for a DFA, it might not be necessary to store all states.

Definition 32

Let A be a NFA, and let B = NFAtoDFA(A). A state Q' of B is minimal if no other state Q'' of B satisfies $Q'' \subset Q'$.

Lemma 33

Let A be an NFA, and let B = NFAtoDFA(A). A is universal iff every minimal state of B is final.

Proof.

Since A and B recognize the same language, A is universal iff B is universal. So A is universal iff every state of B is final. But a state of B is final iff it contains some final state of A, and so every state of B is final iff every minimal state of B is final.

UnivNFA(*A*) **Input:** NFA $A = (Q, \Sigma, \delta, q_0, F)$ **Output: true** if $\mathcal{L}(A) = \Sigma^*$, **false** otherwise

1
$$Q \leftarrow \emptyset;$$

$$2 \quad \mathcal{W} \leftarrow \{ \{q_0\} \}$$

- 3 while $\mathcal{W} \neq \emptyset$ do
- 4 pick Q' from W
- 5 **if** $Q' \cap F = \emptyset$ **then return false**
- 6 **add** *Q*′ **to** Ω
- 7 for all $a \in \Sigma$ do
- 8 **if** $\mathcal{W} \cup \mathcal{Q}$ contains no $Q'' \subseteq \delta(Q', a)$ **then add** $\delta(Q', a)$ **to** \mathcal{W}
- 9 return true

Can this approach be correct?

After all, removing a non-minimal state, we might be preventing the addition of other minimal states in the future!?

Lemma 34

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA, and let B = NFAtoDFA(A). After termination of UnivNFA(A), the set Q contains all minimal states of B.

Proof.

Assume the contrary.

Then B has a shortest path $Q_1 \rightarrow Q_2 \cdots Q_{n-1} \rightarrow Q_n$ such that, after termination,

- $Q_1 \in \mathcal{Q}$, $Q_n \notin \mathcal{Q}$
- Q_n is minimal

Since the path is shortest, $Q_2 \notin Q$, and so when UnivNFA processes Q_1 , it does not add Q_2 . This can only be because UnivNFA already added some $Q'_2 \subset Q_2$.

Proof (cont'd):

But then B has a path $Q'_2 \to Q'_3 \cdots Q'_{n-1} \to Q'_n$ with $Q'_n \subseteq Q_n$. Since Q_n is minimal, $Q'_n = Q_n$ and is minimal.

Thus, the path $Q_2' o \cdots o Q_n'$ satisfies

- $Q_2' \in \mathcal{Q}$, and
- Q'_n is minimal.

This contradicts our assumption that $Q_1 \rightarrow \cdots \rightarrow Q_n$ is as short as possible.

Inclusion and equality

Theorem 35

The inclusion problem for NFAs is PSPACE-complete.

Proof.

If, given two NFAs A_1 and A_2 , we want to test whether $L(A_1) \subseteq L(A_2)$ or, equivalently, $L(A_1) \cap \overline{L(A_2)} = \emptyset$. The negation of the latter can easily be checked (using polynomial space) by guessing a word w (of length at most exponential in the size of A_1 and A_2) such that w is recognized by A_1 but not A_2 .

PSPACE-hardness on the other hand follows since an NFA A is universal iff $L(A) = \Sigma^*$, *i.e.*, the universality problem reduces to the inclusion problem.

- Algorithm: use $L_1 \subseteq L_2$ iff $L_1 \cap \overline{L_2} = \emptyset$
- Concatenate four algorithms:
 - (1) determinize A_2 ,
 - (2) complement the result,
 - (3) intersect it with A_1 , and
 - (4) check for emptiness.
- State of (3): pair (q, Q), where $q \in Q_1$ and $Q \subseteq Q_2$
- Easy optimizations:
 - store only the states of (3), not its transitions;
 - do not perform (1), then (2), then (3): instead, construct directly the states of (3);
 - check (4) while constructing (3);

Further optimization: subsumption test

Definition 36

Let A_1, A_2 be NFAs, and let $B_2 = \mathsf{NFAtoDFA}(A_2)$. A state $[q_1, Q_2]$ of $[A_1, B_2]$ is minimal if no other state $[q'_1, Q'_2]$ satisfies $q'_1 = q_1$ and $Q'_2 \subset Q_2$.

Lemma 37

 $LL(A_1) \subseteq L(A_2)$ iff every minimal state $[q_1, Q_2]$ of $[A_1, B_2]$ satisfying $q_1 \in F_1$ also satisfies $Q_2 \cap F_2 \neq \emptyset$.

Proof.

Since A_2 and B_2 recognize the same language, $L(A_1) \subseteq L(A_2)$ iff $L(A_1) \cap \overline{L(A_2)} = \emptyset$ iff $L(A_1) \cap \overline{L(B_2)} = \emptyset$ iff $[A_1, B_2]$ has a state $[q_1, Q_2]$ such that $q_1 \in F_1$ and $Q_2 \cap F_2 = \emptyset$. But $[A_1, B_2]$ has some state satisfying this condition iff it has some minimal state satisfying it.


```
Algorithm InclNFA(A_1, A_2):
Input: NFAs A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)
Output: true if L(A_1) \subseteq L(A_2), false otherwise
Q := \emptyset
W := \{ [q_{01}, \{q_{02}\}] \}
while W \neq \emptyset do
  pick [q_1, Q_2] from W
  if q_1 \in F_1 and Q_2 \cap F_2 = \emptyset then return false fi
  add [q_1, Q_2] to Q
  for all a \in \Sigma, q'_1 \in \delta_1(q_1, a) do
     Q'_{2} := \delta_{2}(Q_{2}, a)
     if W \cup Q contains no [q_1'', Q_2''] s.t. q_1'' = q_1' and Q_2'' \subseteq Q_2' then
        add [q_1', Q_2'] to W
     fi
```

return true

- Complexity:
 - Let A_1, A_2 be NFAs with n_1, n_2 states over an alphabet with k letters.
 - Without the subsumption test:
 - The while-loop is executed at most $n_1 \cdot 2^{n_2}$ times.
 - The for-loop is executed at most $O(k \cdot n_1)$ times.
 - An execution of the for-loop takes $O(n_2^2)$ time.
 - Overall: $O(k \cdot n_1^2 \cdot n_2^2 \cdot 2^{n_2})$ time.
 - With the subsumption case the worst-case complexity is higher. Exercise: give an upper bound.

Important special case:

If A_1 is an NFA, but A_2 (already) is a DFA, then

- complementing A_2 is now trivial
- we obtain a running time $O(n_1^2 \cdot n_2)$

Remark: To check for equality, we just check inclusion in both directions. To obtain PSPACE-hardness for equality, just observe the universality problem as above.

