

Pre and Post

• Goal (for post):

given

- an automaton A recognizing a set X, and - a transducer T recognizing a relation Rconstruct an automaton B recognizing the set $\{ y \mid \exists x \in X : (x, y) \in R \}$

We slightly modify the construction for join.

Instead of:

$$\begin{bmatrix} q_{01} \\ q_{02} \end{bmatrix} \xrightarrow{ \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}} \begin{bmatrix} q_{11} \\ q_{12} \end{bmatrix} \quad \text{iff}$$

for some letter c1

we now use

 $\begin{bmatrix} 9_{01} \\ 9_{02} \end{bmatrix} \xrightarrow{b_1} \begin{bmatrix} 9_{11} \\ 9_{12} \end{bmatrix} \text{ iff}$

From Join to Post

Join(T_1, T_2) **Input:** transducers $T_1 = (Q_1, \Sigma \times \Sigma, \delta_1, q_{01}, F_1), T_2 = (Q_2, \Sigma \times \Sigma, \delta_2, q_{02}, F_2)$ **Output:** transducer $T_1 \circ T_2 = (Q, \Sigma \times \Sigma, \delta, q_0, F)$

- $1 \quad Q, \delta, F' \leftarrow \emptyset; \ q_0 \leftarrow [q_{01}, q_{02}]$
- $2 \quad W \leftarrow \{[q_{01},q_{02}]\}$
- 3 while $W \neq \emptyset$ do
- 4 **pick** $[q_1, q_2]$ from W
- 5 **add** $[q_1, q_2]$ to Q
- 6 if $q_1 \in F_1$ and $q_2 \in F_2$ then add $[q_1, q_2]$ to F'
- 7 **for all** $(q_1, (a, c), q'_1) \in \delta_1, (q_2, (c, b), q'_2) \in \delta_2$ **do**
- 8 **add** $([q_1, q_2], (a, b), [q'_1, q'_2])$ to δ
- 9 **if** $[q'_1, q'_2] \notin Q$ then add $[q'_1, q'_2]$ to W
- 10 $F \leftarrow \mathbf{PadClosure}((Q, \Sigma \times \Sigma \delta, q_0, F'), (\#, \#))$

Example: compute the set { f(n) | n multiple of 3 }

5 Implementing operations on relations using finite automata

6. Some pattern matching

Given

- a word w (the text) of length n, and
- a regular expression p (the pattern) of length m,

determine the smallest number k' such that there is a subword $w_{k,k'}$ of w with

 $w_{k,k'} \in L(p)$.

Remark: We here minimize the right end of the matching subword. To make a match unique, one could require *e.g.*, that its length is minimal (or maximal).

NFA-based solution

PatternMatchingNFA(t, p)

Input: text $t = a_1 \dots a_n \in \Sigma^+$, pattern $p \in \Sigma^*$

Output: the first occurrence of p in t, or \perp if no such occurrence exists.

- 1 $A \leftarrow RegtoNFA(\Sigma^* p)$
- $2 \quad S \leftarrow \{q_0\}$
- 3 **for all** k = 0 to n 1 **do**
- 4 **if** $S \cap F \neq \emptyset$ then return *k*

5
$$S \leftarrow \delta(S, a_{k+1})$$

- 6 return \perp
- Line 1 takes $O(m^3)$ time, output has O(m) states
- Loop is executed at most *n* times
- One iteration takes $O(s^2)$ time, where s is the number of states of A
- Since s = O(m), the total runtime is $O(m^3 + nm^2)$, and $O(nm^2)$ for $m \le n$.

DFA-based solution

PatternMatchingDFA(t, p)

Input: text $t = a_1 \dots a_n \in \Sigma^+$, pattern p

Output: the first occurrence of p in t, or \perp if no such occurrence exists.

- 1 $A \leftarrow NFAtoDFA(RegtoNFA(\Sigma^* p))$
- 2 $q \leftarrow q_0$
- 3 **for all** k = 0 to n 1 **do**
- 4 **if** $q \in F$ then return k

5
$$q \leftarrow \delta(q, a_{k+1})$$

- 6 return \perp
- Line 1 takes 2^{0(m)} time
- Loop is executed at most *n* times
- One iteration takes constant time
- Total runtime is $O(n) + 2^{O(m)}$

The word case

- The pattern *p* is a word of length *m*
- Naive algorithm: move a window of size m along the word one letter at a time, and compare with p after each step. Runtime: O(nm)
- We give an algorithm with O(n + m) runtime for any alphabet of size $0 \le |\Sigma| \le n$.
- First we explore in detail the shape of the DFA for Σ*p.

Intuition

- Transitions of the "spine" correspond to hits: the next letter is the one that "makes progress" towards nano
- Other transitions correspond to misses, i.e., "wrong letters" and "throw the automaton back"

- For every state *i* = 0,1,..., 4 of the NFA there is exactly one state *S* of the DFA such that *i* is the largest state of *S*.
- For every state S of the DFA, with the exception of $S = \{0\}$, the result of removing the largest state is again a state of the DFA.

- For every state *i* = 0,1,..., 4 of the NFA there is exactly one state *S* of the DFA such that *i* is the largest state of *S*.
- For every state S of the DFA, with the exception of $S = \{0\}$, the result of removing the largest state is again a state of the DFA.
- Do these properties hold for every pattern p?

Heads and tails, hits and misses

- Head of S, denoted h(S) : largest state of S
- Tail of S, denoted t(S) : rest of the state
- Example: $h(\{3,1,0\}) = 3, t(\{3,1,0\}) = \{1,0\}$
- Given a state *S*, the letter leading to the next state in the "spine" is the (unique) hit letter for *S*
- All other letters are miss letters for *S*
- Example: hit for {3,1,0} is *o*, whereas *n* or *a* are misses

Fund. Prop: Let S_k be the k-th state picked from the worklist during the execution of NFAtoDFA(A_p).
(1) h(S_k) = k,
(2) If k > 0, then t(S_k) = S_l for some l < k

Proof Idea:

- (1) and (2) hold for $S_0 = \{0\}$.
- For S_k we look at $\delta(S_k, a)$ for each a, where δ transition relation of A_p .
- By i.h. we have $S_k = \{k\} \cup S_l$ for some l < k
- We distinguish two cases: *a* is a hit for *S_k*, and *a* is a miss for *S_k*.

•
$$\delta(S_{k}, a) = \delta(k, a) \cup \delta(S_{l}, a)$$

•
$$\delta(S_k, a) = \delta(k, a) \cup \delta(S_l, a)$$

•
$$\delta(S_{k}, a) = \delta(k, a) \cup \delta(S_{l}, a)$$

•
$$\delta(S_{k}, a) = \delta(k, a) \cup \delta(S_{l}, a)$$

•
$$\delta(S_{k}, a) = \delta(k, a) \cup \delta(S_{l}, a)$$

Consequences

Prop: The result of applying *NFAtoDFA*(A_p), where A_p is the obvious NFA for $\Sigma^* p$, yields a minimal DFA with m states and $|\Sigma|m$ transitions.

Proof: All states of the DFA accept different languages.

So: concatenating *NFAtoDFA* and *PatternMatchingDFA* yields a $O(n + |\Sigma|m)$ algorithm.

- Good enough for constant alphabet
- Not good enough for $|\Sigma| = O(n)$

