Symbolic exploration

- A technique to palliate the state-explosion problem
- Configurations can be encoded as words.
- The set of reachable configurations of a program can be encoded as a language.
- We use automata to compactly store the set of reachable configurations.

Flowgraphs

1	while $x=1$ do
2	if $y=1$ then
3	$x \leftarrow 0$
4	$y \leftarrow 1-x$
5	end

8 Verification

Step relations

- Let l, l^{\prime} be two control points of a flowgraph.
- The step relation $S_{l, l^{\prime}}$ contains all pairs

$$
\left(\left[l, x_{0}, y_{0}\right],\left[l^{\prime}, x_{0}^{\prime}, y_{0}^{\prime}\right]\right)
$$

of configurations such that:
if at point l the current values of x, y are x_{0}, y_{0}, then the program can take a step, after which the new control point is l^{\prime}, and the new values of x, y are $x_{0}^{\prime}, y_{0}^{\prime}$.

$$
S_{4,1}=\left\{\left(\left[4, x_{0}, y_{0}\right],\left[1, x_{0}, 1-x_{0}\right]\right) \mid x_{0}, y_{0} \in\{0,1\}\right\}
$$

- The global step relation S is the union of the step relations $S_{l, l^{\prime}}$ for all pairs l, l^{\prime} of control points.

Computing reachable configurations

- Start with the set of initial configurations.
- Iteratively: add the set of successors of the current set of configurations until a fixed point is reached.

$$
P_{0}=I
$$

$$
P_{1}=P_{0} \cup \operatorname{Post}\left(P_{0}, S\right)
$$

$$
P_{0}=I
$$

$$
P_{1}=P_{0} \cup \operatorname{Post}\left(P_{0}, S\right)
$$

$$
P_{0}=I
$$

$$
P_{2}=P_{1} \cup \operatorname{Post}\left(P_{1}, S\right)
$$

8 Verification

$$
P_{1}=P_{0} \cup \operatorname{Post}\left(P_{0}, S\right)
$$

$$
P_{0}=I
$$

$$
P_{2}=P_{1} \cup \operatorname{Post}\left(P_{1}, S\right)
$$

8 Verification

$$
P_{1}=P_{0} \cup \operatorname{Post}\left(P_{0}, S\right)
$$

$$
P_{0}=I
$$

$$
P_{2}=P_{1} \cup \operatorname{Post}\left(P_{1}, S\right)
$$

$\operatorname{Reach}(I, R)$
Input: set I of initial configurations; relation R Output: set of configurations reachable form I
$1 \quad$ Old $P \leftarrow \emptyset ; P \leftarrow I$
2 while $P \neq$ Old P do
$3 \quad$ Old $P \leftarrow P$
$4 \quad P \leftarrow \mathbf{U n i o n}(P, \operatorname{Post}(P, S))$
5 return P

Example: Transducer for the global step relation

Example: DFAs generated by Reach

- Initial configurations

- Configurations reachable in at most 1 step

Example: DFAs generated by Reach

- Configurations reachable in at most 2 steps

Example: DFAs generated by Reach

- Configurations reachable in at most 3 steps

Variable orders

- Consider the set Y of tuples $\left[x_{1}, \ldots, x_{2 k}\right]$ of booleans such that

$$
x_{1}=x_{k+1}, x_{2}=x_{k+2}, \ldots, x_{k}=x_{2 k}
$$

- A tuple $\left[x_{1}, \ldots, x_{2 k}\right]$ can be encoded by the word $x_{1} x_{2} \ldots x_{2 k-1} x_{2 k}$ but also by the word $x_{1} x_{k+1} \ldots x_{k} x_{2 k}$.
- For $k=3$, the encodings of Y are then, respectively
$\{000000,001001,010010,011011,100100,101101,110110,111111\}$
$\{000000,000011,001100,001111,110000,110011,111100,111111\}$
- The minimal DFAs for these languages have very different sizes!

8 Verification

Another example: Lamport's algorithm

$$
\begin{gathered}
\left\langle v_{0}, v_{1}, s_{0}, s_{1}\right\rangle \\
\text { encoded by } \\
s_{0} s_{1} v_{0} v_{1}
\end{gathered}
$$

$$
\left\langle v_{0}, v_{1}, s_{0}, s_{1}\right\rangle
$$

encoded by

$$
v_{1} s_{1} s_{0} v_{0}
$$

Larger sets can yield smaller DFAs!

- DFAs after adding the configuration $\left\langle c_{0}, c_{1}, 1,1\right\rangle$ to the set
- When encoding configurations, good variable orders can lead to much smaller automata.
- Unfortunately, the problem of finding an optimal encoding for a language represented by a DFA is NP-complete.

