
Proof sketch

1. If 퐿 is finite, then it is FO-definable

2. If 퐿 is co-finite, then it is FO-definable.

AFS 9 Automata and Monadic Second-Order Logic 288/431
c©je/ewm

Proof sketch

3. If 퐿 is FO-definable (over a one-letter
alphabet), then it is finite or co-finite.

1) We define a new logic QF (quantifier-free
fragment)

2) We show that a language is QF-definable iff it is
finite or co-finite

3) We show that a language is QF-definable iff it FO-
definable.

AFS 9 Automata and Monadic Second-Order Logic 289/431
c©je/ewm

1) The logic QF

• 푥 < 푘 푥 > 푘
푥 < 푦 + 푘 푥 > 푦 + 푘
푘	 < 	푙푎푠푡 푘	 > 	푙푎푠푡
are formulas for every variable 푥, 푦 and every
푘 ≥ 0 .

• If 푓 ,푓 are formulas, then so are 푓 ∨ 푓 and
푓 ∧ 푓

AFS 9 Automata and Monadic Second-Order Logic 290/431
c©je/ewm

2) 퐿 is QF-definable iff it is finite or co-finite

(→) Let f be a sentence of QF.
Then f is an and-or combination of formulas
푘	 < 	푙푎푠푡	 and 푘	 > 	푙푎푠푡.

퐿(푘 < 푙푎푠푡) = {푘 + 1,푘 + 2, … }	is co-finite (we
identify words and numbers)
퐿(푘 > 푙푎푠푡) = {0,1, … ,푘}	is finite
퐿 푓 ∨ 푓 = 퐿 푓 	∪ 퐿 푓 and so if 퐿(푓) and 퐿 푔
finite or co-finite the 퐿 is finite or co-finite.
퐿 푓 ∧ 푓 = 퐿 푓 	∩ 퐿 푓 and so if 퐿(푓) and 퐿 푔
finite or co-finite the 퐿 is finite or co-finite.

AFS 9 Automata and Monadic Second-Order Logic 291/431
c©je/ewm

2) 퐿 is QF-definable iff it is finite or co-finite

(←) If 퐿	 = 	 {푘 , … , 푘 }	is finite, then
푘 − 1 < 푙푎푠푡	 ∧ 	푙푎푠푡 < 푘 + 1 ∨⋯∨

(푘 − 1 < 푙푎푠푡	 ∧ 	푙푎푠푡 < 푘 + 1)														
expresses 퐿.

If 퐿 is co-finite, then its complement is finite, and so expressed
by some formula. We show that for every 푓 some formula
푛푒푔(푓) expresses 퐿(푓)
• 푛푒푔 푘 < 푙푎푠푡 = 푘 − 1 < 푙푎푠푡	 ∧ 	푙푎푠푡 < 푘 + 1

∨ 	푙푎푠푡 < 푘
• 푛푒푔 푓 ∨ 푓 = 푛푒푔 푓 ∧ 푛푒푔 푓
• 푛푒푔(푓 ∧ 푓) = 푛푒푔(푓) ∨ 푛푒푔(푓)

AFS 9 Automata and Monadic Second-Order Logic 292/431
c©je/ewm

3) Every first-order formula 휑 has an equivalent
QF-formula 푄퐹(휑)

• 푄퐹 푥 < 푦 = 푥 < 푦 + 0	
• 푄퐹 ¬휑 = 푛푒푔 푄퐹 휑
• 푄퐹 휑 ∨ 휑 = 푄퐹 휑 ∨ 푄퐹 휑 	
• 푄퐹 휑 ∧ 휑 = 푄퐹 휑 ∧ 푄퐹 휑 	
• 푄퐹 ∃푥	휑 = 푄퐹(∃푥	푄퐹 휑)

– If 푄퐹 휑 	disjunction, apply ∃x	(휑 ∨ ... ∨ 휑) =
∃x	휑 ∨ ... ∨ ∃x	휑

– If 푄퐹 휑 	 conjunction (or atomic formula), see example in the
next slide.

AFS 9 Automata and Monadic Second-Order Logic 293/431
c©je/ewm

• Consider the formula
∃푥					푥 < 푦 + 3					 ∧

푧 < 푥 + 4					 ∧
푧 < 푦 + 2					 ∧
푦 < 푥 + 1	

• The equivalent QF-formula is
푧 < 푦 + 8		 ∧ 		푦 < 푦 + 5		 ∧ 		푧 < 푦 + 2

AFS 9 Automata and Monadic Second-Order Logic 294/431
c©je/ewm

Monadic second-order logic

• First-order variables: interpreted on positions
• Monadic second-order variables: interpreted

on sets of positions.
– Diadic second-order variables: interpreted on

relations over positions
– Monadic third-order variables: interpreted on sets

of sets of positions
– New atomic formulas: 푥 ∈ 푋

AFS 9 Automata and Monadic Second-Order Logic 295/431
c©je/ewm

Expressing „even length“

• Express
There is a set 푿of positions such that
– 푿 contains exactly the even positions, and
– the last position belongs to 푿.

• Express
푿 contains exactly the even positions

as
A position is in 푿 iff it is second position or the

second successor of another position of 푿

AFS 9 Automata and Monadic Second-Order Logic 296/431
c©je/ewm

Syntax and semantics of MSO

• New set 푋,푌,푍, … of second-order variables
• New syntax: 푥 ∈ 푋 and ∃푥	휑
• New semantics:

– Interpretations now also assign sets of positions to
the free second-order variables.

– Satisfaction defined as expected.

AFS 9 Automata and Monadic Second-Order Logic 297/431
c©je/ewm

Expressing 푐∗ 푎푏 ∗푑∗

• Express:
There is a block 푿 of consecutive positions such that

– before 푿 there are only 풄‘s;
– after 푿 there are only 풃‘s;
– 풂‘s and 풃‘s alternate in 푿;
– the first letter in 푿 is an 풂, and the last is a 풃.

• Then we can take the formula
∃푋	(퐶표푛푠 푋 	∧ 퐵표푐 푋 ∧ 퐴표푑 푋 ∧ Alt X

∧ 퐹푎 푋 ∧ 퐿푏 푋)

AFS 9 Automata and Monadic Second-Order Logic 298/431
c©je/ewm

• 푿 is a block of consecutive positions

• Before 푿 there are only 풄‘s

• In 푿 풂‘s and 풃‘s alternate

AFS 9 Automata and Monadic Second-Order Logic 299/431
c©je/ewm

Every regular language is expressible in
MSO logic

• Goal: given an arbitrary regular language 퐿,
construct an MSO sentence 휑 such having
퐿 = 퐿(휑).

• We use: if 퐿 is regular, then there is a DFA 퐴
recognizing 퐿.

• Idea: construct a formula expressing
the run of 푨 on this word is accepting

AFS 9 Automata and Monadic Second-Order Logic 300/431
c©je/ewm

• Fix a regular language 퐿.
• Fix a DFA 퐴 with states 푞 , … , 푞 recognizing 퐿.
• Fix a word 푤 = 푎 푎 … 푎 .
• Let 푃 be the set of positions 푖 such that after

reading 푎 푎 …푎 the automaton 퐴 is in state 푞.
• We have:

퐴 accepts 푤 iff 푚 ∈ 푃 for some final state 푞.

AFS 9 Automata and Monadic Second-Order Logic 301/431
c©je/ewm

