
Proof sketch

1. If 퐿 is finite, then it is FO-definable

2. If 퐿 is co-finite, then it is FO-definable.
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Proof sketch

3. If 퐿 is FO-definable (over a one-letter 
alphabet), then it is finite or co-finite.

1) We define a new logic QF (quantifier-free 
fragment)

2) We show that a language is QF-definable iff it is 
finite or co-finite

3) We show that a language is QF-definable iff it FO-
definable.
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1) The logic QF

• 푥 < 푘 푥 > 푘
푥 < 푦 + 푘 푥 > 푦 + 푘
푘	 < 	푙푎푠푡 푘	 > 	푙푎푠푡
are formulas for every variable 푥, 푦 and every 
푘 ≥ 0 .

• If 푓 ,푓 are formulas, then so are 푓 ∨ 푓 and 
푓 ∧ 푓
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2) 퐿 is QF-definable iff it is finite or co-finite

(→) Let f be a sentence of QF.
Then f is an and-or combination of formulas 
푘	 < 	푙푎푠푡	 and 푘	 > 	푙푎푠푡.

퐿(푘 < 푙푎푠푡) = {푘 + 1,푘 + 2, … }	is co-finite (we 
identify words and numbers)
퐿(푘 > 푙푎푠푡) = {0,1, … ,푘}	is finite
퐿 푓 ∨ 푓 = 퐿 푓 	∪ 퐿 푓 and so if 퐿(푓) and 퐿 푔
finite or co-finite the 퐿 is finite or co-finite.
퐿 푓 ∧ 푓 = 퐿 푓 	∩ 퐿 푓 and so if 퐿(푓) and 퐿 푔
finite or co-finite the 퐿 is finite or co-finite.
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2) 퐿 is QF-definable iff it is finite or co-finite

(←) If  퐿	 = 	 {푘 , … , 푘 }	is finite, then
푘 − 1 < 푙푎푠푡	 ∧ 	푙푎푠푡 < 푘 + 1 ∨⋯∨

(푘 − 1 < 푙푎푠푡	 ∧ 	푙푎푠푡 < 푘 + 1)														
expresses 퐿.

If 퐿 is co-finite, then its complement is finite, and so expressed 
by some formula. We show that for every  푓 some formula  
푛푒푔(푓) expresses  퐿(푓)
• 푛푒푔 푘 < 푙푎푠푡 = 푘 − 1 < 푙푎푠푡	 ∧ 	푙푎푠푡 < 푘 + 1

∨ 	푙푎푠푡 < 푘
• 푛푒푔 푓 ∨ 푓 = 푛푒푔 푓 ∧ 푛푒푔 푓
• 푛푒푔(푓 ∧ 푓 ) = 푛푒푔(푓 ) ∨ 푛푒푔(푓 )
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3) Every first-order formula 휑 has an equivalent 
QF-formula 푄퐹(휑)

• 푄퐹 푥 < 푦 = 푥 < 푦 + 0	
• 푄퐹 ¬휑 = 푛푒푔 푄퐹 휑
• 푄퐹 휑 ∨ 휑 = 푄퐹 휑 ∨ 푄퐹 휑 	
• 푄퐹 휑 ∧ 휑 = 푄퐹 휑 ∧ 푄퐹 휑 	
• 푄퐹 ∃푥	휑 = 푄퐹(∃푥	푄퐹 휑 )

– If 푄퐹 휑 	disjunction, apply ∃x	(휑 ∨ ... ∨ 휑 ) =
∃x	휑 ∨  ... ∨ ∃x	휑

– If 푄퐹 휑 	 conjunction  (or atomic formula), see example in the 
next slide.
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• Consider the formula
∃푥					푥 < 푦 + 3					 ∧

푧 < 푥 + 4					 ∧
푧 < 푦 + 2					 ∧
푦 < 푥 + 1	

• The equivalent QF-formula is
푧 < 푦 + 8		 ∧ 		푦 < 푦 + 5		 ∧ 		푧 < 푦 + 2
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Monadic second-order logic

• First-order variables: interpreted on positions
• Monadic second-order variables: interpreted 

on sets of positions.
– Diadic second-order variables: interpreted on 

relations over positions
– Monadic third-order variables: interpreted on sets 

of sets of positions
– New atomic formulas:  푥 ∈ 푋
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Expressing „even length“

• Express 
There is a set 푿of positions such that
– 푿 contains exactly the even positions, and
– the last position belongs to 푿.

• Express 
푿 contains exactly the even positions 

as 
A position is in 푿 iff it is  second position or the 

second successor of another position of 푿
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Syntax and semantics of MSO

• New set 푋,푌,푍, … of second-order variables
• New syntax:  푥 ∈ 푋 and ∃푥	휑
• New semantics:

– Interpretations now also assign sets of positions to 
the free second-order variables.

– Satisfaction defined as expected.
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Expressing 푐∗ 푎푏 ∗푑∗

• Express: 
There is a block 푿 of consecutive positions such that 

– before 푿 there are only 풄‘s; 
– after 푿 there are only 풃‘s; 
– 풂‘s and 풃‘s alternate in 푿; 
– the first letter in 푿 is an 풂, and the last is a 풃.

• Then we can take the formula
∃푋	(퐶표푛푠 푋 	∧ 퐵표푐 푋 ∧ 퐴표푑 푋 ∧ Alt X

∧ 퐹푎 푋 ∧ 퐿푏 푋 	)

AFS 9 Automata and Monadic Second-Order Logic 298/431
c©je/ewm



• 푿 is a block of consecutive positions

• Before 푿 there are only 풄‘s

• In 푿 풂‘s and 풃‘s alternate
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Every regular language is expressible in 
MSO logic

• Goal: given an arbitrary regular language 퐿, 
construct an MSO sentence 휑 such having 
퐿 = 퐿(휑).

• We use: if 퐿 is regular, then there is a DFA 퐴
recognizing 퐿. 

• Idea: construct a formula expressing 
the run of 푨 on this word is accepting
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• Fix a regular language 퐿. 
• Fix a DFA 퐴 with states 푞 , … , 푞 recognizing 퐿.
• Fix a word 푤 = 푎 푎 … 푎 . 
• Let 푃 be the set of positions 푖 such that after 

reading 푎 푎 …푎 the automaton 퐴 is in state 푞.
• We have: 

퐴 accepts 푤 iff 푚 ∈ 푃 for some final state 푞.
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