Proof sketch

1. If L is finite, then it is FO-definable

2. If L is co-finite, then it is FO-definable.

Proof sketch

3. If L is FO-definable (over a one-letter alphabet), then it is finite or co-finite.
1) We define a new logic QF (quantifier-free fragment)
2) We show that a language is $Q F$-definable iff it is finite or co-finite
3) We show that a language is QF-definable iff it FOdefinable.

1) The logic QF

- $x<k \quad x>k$
$x<y+k \quad x>y+k$
$k<$ last $k>$ last
are formulas for every variable x, y and every $k \geq 0$.
- If f_{1}, f_{2} are formulas, then so are $f_{1} \vee f_{2}$ and $f_{1} \wedge f_{2}$

2) L is QF-definable iff it is finite or co-finite
(\rightarrow) Let f be a sentence of QF.
Then f is an and-or combination of formulas
$k<$ last and $k>$ last.
$L(k<$ last $)=\{k+1, k+2, \ldots\}$ is co-finite (we identify words and numbers)
$L(k>$ last $)=\{0,1, \ldots, k\}$ is finite
$L\left(f_{1} \vee f_{2}\right)=L\left(f_{1}\right) \cup L\left(f_{2}\right)$ and so if $L(f)$ and $L(g)$ finite or co-finite the L is finite or co-finite.
$L\left(f_{1} \wedge f_{2}\right)=L\left(f_{1}\right) \cap L\left(f_{2}\right)$ and so if $L(f)$ and $L(g)$ finite or co-finite the L is finite or co-finite.

2) L is QF-definable iff it is finite or co-finite

(\leftarrow) If $L=\left\{k_{1}, \ldots, k_{n}\right\}$ is finite, then

$$
\left(k_{1}-1<\text { last } \wedge \text { last }<k_{1}+1\right) \vee \cdots \vee
$$

$$
\left(k_{n}-1<\text { last } \wedge \text { last }<k_{n}+1\right)
$$

expresses L.
If L is co-finite, then its complement is finite, and so expressed by some formula. We show that for every f some formula $n e g(f)$ expresses $\overline{L(f)}$

- neg $(k<$ last $)=(k-1<$ last \wedge last $<k+1)$
\vee last $<k$
- $\operatorname{neg}\left(f_{1} \vee f_{2}\right)=n e g\left(f_{1}\right) \wedge n e g\left(f_{2}\right)$
- $\operatorname{neg}\left(f_{1} \wedge f_{2}\right)=\operatorname{neg}\left(f_{1}\right) \vee \operatorname{neg}\left(f_{2}\right)$

3) Every first-order formula φ has an equivalent QF-formula $Q F(\varphi)$

- $Q F(x<y)=x<y+0$
- $Q F(\neg \varphi)=\operatorname{neg}(Q F(\varphi))$
- $Q F\left(\varphi_{1} \vee \varphi_{2}\right)=Q F\left(\varphi_{1}\right) \vee Q F\left(\varphi_{2}\right)$
- $Q F\left(\varphi_{1} \wedge \varphi_{2}\right)=Q F\left(\varphi_{1}\right) \wedge Q F\left(\varphi_{2}\right)$
- $Q F(\exists x \varphi)=Q F(\exists x Q F(\varphi))$
- If $Q F(\varphi)$ disjunction, apply $\exists \mathrm{x}\left(\varphi_{1} \vee \ldots \vee \varphi_{n}\right)=$ $\exists \mathrm{x} \varphi_{1} \vee \ldots \vee \exists \mathrm{x} \varphi_{n}$
- If $Q F(\varphi)$ conjunction (or atomic formula), see example in the next slide.
- Consider the formula

$$
\begin{array}{lll}
\exists x & x<y+3 & \wedge \\
& z<x+4 & \wedge \\
z<y+2 & \wedge \\
& y<x+1 &
\end{array}
$$

- The equivalent QF -formula is

$$
z<y+8 \wedge y<y+5 \wedge z<y+2
$$

M onadic second-order logic

- First-order variables: interpreted on positions
- M onadic second-order variables: interpreted on sets of positions.
- Diadic second-order variables: interpreted on relations over positions
- M onadic third-order variables: interpreted on sets of sets of positions
- New atomic formulas: $x \in X$

Expressing „even length"

- Express

There is a set X of positions such that

- X contains exactly the even positions, and
- the last position belongs to X.
- Express
X contains exactly the even positions
as
A position is in X iff it is second position or the second successor of another position of X

Syntax and semantics of M SO

- New set $\{X, Y, Z, \ldots\}$ of second-order variables
- New syntax: $x \in X$ and $\exists x \varphi$
- New semantics:
- Interpretations now also assign sets of positions to the free second-order variables.
- Satisfaction defined as expected.

Expressing $c^{*}(a b)^{*} d^{*}$

- Express:

There is a block X of consecutive positions such that

- before X there are only c 's;
- after X there are only b 's;
$-a^{\prime}$ s and b^{\prime} s alternate in X;
- the first letter in X is an a, and the last is a b.
- Then we can take the formula
$\exists X(\operatorname{Cons}(X) \wedge \operatorname{Boc}(X) \wedge \operatorname{Aod}(X) \wedge \operatorname{Alt}(X)$ $\wedge F a(X) \wedge L b(X))$
- X is a block of consecutive positions
- Before X there are only c 's
- In $X a^{\prime} \mathrm{s}$ and $b^{\prime} \mathrm{s}$ alternate

Every regular language is expressible in M SO logic

- Goal: given an arbitrary regular language L, construct an M SO sentence φ such having $L=L(\varphi)$.
- We use: if L is regular, then there is a DFA A recognizing L.
- Idea: construct a formula expressing the run of A on this word is accepting
- Fix a regular language L.
- Fix a DFA A with states q_{0}, \ldots, q_{n} recognizing L.
- Fixa word $w=a_{1} a_{2} \ldots a_{m}$.
- Let P_{q} be the set of positions i such that after reading $a_{1} a_{2} \ldots a_{i}$ the automaton A is in state q.
- We have:
A accepts w iff $m \in P_{q}$ for some final state q.

