
• Assume we can construct a formula
푉푖푠푖푡푠(푋 , … ,푋)

which is true for 푤, 퓘 	iff
	퓘 푋 = 푃 , … , 퓘 푋 = 푃

• Then (푤, 퓘) satisfies the formula

iff 푤 has a last letter and 푤 ∈ 퐿, and we easily
get a formula expressing 퐿 .

AFS 9 Automata and Monadic Second-Order Logic 302/431
c©je/ewm

• To construct 푉푖푠푖푡푠(푋 , … ,푋) we observe that
the sets 푃 are the unique sets satisfying
a) 1 ∈ 푃 , i.e., after reading the first letter the

DFA is in state 훿 푞 ,푎 .
b) The sets 푃 build a partition of the set of positions,

i.e., the DFA is always in exactly one state.
c) If 푖 ∈ 푃 and 훿 푞, 푎 = 푞′ then 푖 + 1 ∈ 푃 , i.e.,

the sets „match“ 훿.

• We give formulas for a) , b), and c)

AFS 9 Automata and Monadic Second-Order Logic 303/431
c©je/ewm

• Formula for a)

• Formula for b)

AFS 9 Automata and Monadic Second-Order Logic 304/431
c©je/ewm

• Formula for c)

• Together:

AFS 9 Automata and Monadic Second-Order Logic 305/431
c©je/ewm

Every language expressible in MSO
logic is regular

• Recall: an interpretation of a formula is a pair
(푤, 퓘) consisting of a word 푤 and
assignments 퓘	to the free first and second
order variables (and perhaps to others).

AFS 9 Automata and Monadic Second-Order Logic 306/431
c©je/ewm

• We encode interpretations as words.

AFS 9 Automata and Monadic Second-Order Logic 307/431
c©je/ewm

• Given a formula with 푛 free variables, we
encode an interpretation (푤, 퓘) as a word
푒푛푐(푤, 퓘) over the alphabet Σ × 0,1 .

• The language of the formula 휑 , denoted by
퐿(휑), is given by

퐿 휑 ={푒푛푐 푤, 퓘 |	 푤, 퓘 ⊨ 휑}
• We prove by induction on the structure of 휑

that 퐿 휑 is regular (and explicitely construct
an automaton for it).

AFS 9 Automata and Monadic Second-Order Logic 308/431
c©je/ewm

Case 휑 = 푄 (푥)

AFS 9 Automata and Monadic Second-Order Logic 309/431
c©je/ewm

Case 휑 = 푥 < 푦

AFS 9 Automata and Monadic Second-Order Logic 310/431
c©je/ewm

Case 휑 = 푥 ∈ 푋

AFS 9 Automata and Monadic Second-Order Logic 311/431
c©je/ewm

Case 휑 = ¬휓
• Then 푓푟푒푒 휑 = 푓푟푒푒(휓) . By i.h. 퐿 휓 is regular.
• 퐿 휑 is equal to 퐿 휓 minus the words that do not encode any

implementation („the garbage“).
• Equivalently, 퐿 휑 is equal to the intersection of 퐿 휓 and the

encodings of all interpretations of 휓.
• We show that the set of these encodings is regular.

– Condition for encoding: Let 푥 be a free first-oder variable of
휓	. The projection of an encoding onto 푥 must belong to
0∗10∗ (because it represents one position).

– So we just need an automaton for the words satisfying this
condition for every free first-order variable.

AFS 9 Automata and Monadic Second-Order Logic 312/431
c©je/ewm

Example: 푓푟푒푒 휑 = {푥,푦}

AFS 9 Automata and Monadic Second-Order Logic 313/431
c©je/ewm

Case 휑 = 휑 ∨ 휑
• Then 푓푟푒푒 휑 = 푓푟푒푒 휑 ∪ 푓푟푒푒 휑 . By i.h. 퐿 휑

and 퐿 휑 	are regular.
• If 푓푟푒푒 휑 = 푓푟푒푒 휑 then 퐿 휑 = 퐿 휑 ∪ 퐿(휑)

and so 퐿 휑 is regular.
• If 푓푟푒푒 휑 ≠ 푓푟푒푒 휑 then we extend 퐿 휑 to a

language 퐿 	encoding all interpretations of
푓푟푒푒 휑 ∪ 푓푟푒푒 휑 whose projection onto
푓푟푒푒 휑 belongs to 퐿 휑 . Similarly we extend
퐿 휑 to 퐿 . We have
 퐿 and 퐿 are regular.
 퐿 휑 = 퐿 ∪ 퐿 .

AFS 9 Automata and Monadic Second-Order Logic 314/431
c©je/ewm

Example: 휑 = 푄 푥 ∨ 푄_푏(푦)
• 퐿 contains the encodings of all

interpretations (푤, 푥	 ⟼ 푛 , 푦 ⟼ 푛) such
that the encoding of (푤, 푥	 ⟼ 푛) belongs
to 퐿 푄 푥 .

• Automata for 퐿 푄 푥 and 퐿 :

AFS 9 Automata and Monadic Second-Order Logic 315/431
c©je/ewm

• Then 푓푟푒푒(휑)= 푓푟푒푒 휓 		⃥	{푥} or 푓푟푒푒(휑)=
푓푟푒푒 휓 		⃥	{푋}

• By i.h. 퐿(휓) is regular.
• 퐿 휑 is the result of projecting 퐿(휓) onto the

components for 푓푟푒푒 휓 		⃥	{푥} or
푓푟푒푒 휓 		⃥	 푋 .

Cases 휑 = ∃푥	휓 and 휑 = ∃푋	휓

AFS 9 Automata and Monadic Second-Order Logic 316/431
c©je/ewm

• Automata for 푄 푥 and ∃푥	푄 푥

Example: 휑 = 푄 푥

AFS 9 Automata and Monadic Second-Order Logic 317/431
c©je/ewm

The mega-example
• We compute an automaton for

• First we rewrite 휑 into

• In the next slides we
1. compute a DFA for 푙푎푠푡 푥
2. compute DFAs for ∃푥	(푙푎푠푡 푥 ∧ 푄 푥) and

¬∃푥	(¬푙푎푠푡 푥 ∧ ¬푄 푥)
3. compute a DFA for the complete formula.

• We denote the DFA for a formula 휓 by [휓].

AFS 9 Automata and Monadic Second-Order Logic 318/431
c©je/ewm

[푙푎푠푡 푥]

AFS 9 Automata and Monadic Second-Order Logic 319/431
c©je/ewm

[∃푥	 푙푎푠푡 푥 ∧ 푄 푥]

AFS 9 Automata and Monadic Second-Order Logic 320/431
c©je/ewm

[¬푄 푥]

[푄 푥]

AFS 9 Automata and Monadic Second-Order Logic 321/431
c©je/ewm

[¬∃푥	 ¬푙푎푠푡 푥 ∧ ¬푄 푥]

AFS 9 Automata and Monadic Second-Order Logic 322/431
c©je/ewm

[∃푥	 푙푎푠푡 푥 ∧ 푄 푥
∧ ¬∃푥	 ¬푙푎푠푡 푥 ∧ ¬푄 푥]

AFS 9 Automata and Monadic Second-Order Logic 323/431
c©je/ewm

