
• Assume we can construct a formula 
푉푖푠푖푡푠(푋 , … ,푋 )

which  is true for 푤, 퓘 	iff
	퓘 푋 = 푃 , … , 퓘 푋 = 푃

• Then (푤, 퓘) satisfies the formula

iff 푤 has a last letter and 푤 ∈ 퐿, and we easily 
get a formula expressing 퐿 .
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• To construct 푉푖푠푖푡푠(푋 , … ,푋 ) we observe that 
the sets 푃 are the unique sets satisfying
a) 1 ∈ 푃 , i.e., after reading the first letter the 

DFA is in state 훿 푞 ,푎 .
b) The sets 푃 build a partition of the set of positions, 

i.e., the DFA is always in exactly one state.
c) If 푖 ∈ 푃 and 훿 푞, 푎 = 푞′ then 푖 + 1 ∈ 푃 , i.e., 

the sets „match“ 훿.

• We give formulas for a) , b), and c)
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• Formula for a)

• Formula for b)
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• Formula for c)

• Together:
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Every language expressible in MSO 
logic is regular

• Recall: an interpretation of a formula is a pair 
(푤, 퓘) consisting of a word 푤 and 
assignments 퓘	to the free first and second 
order variables (and perhaps to others).
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• We encode interpretations as words.
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• Given a formula with 푛 free variables, we 
encode an interpretation (푤, 퓘) as a word 
푒푛푐(푤, 퓘) over the alphabet Σ × 0,1 .

• The language of the formula 휑 , denoted by 
퐿(휑), is given by

퐿 휑 ={푒푛푐 푤, 퓘 |	 푤, 퓘 ⊨ 휑}
• We prove by induction on the structure of 휑

that 퐿 휑 is regular (and explicitely construct 
an automaton for it).
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Case  휑 = 푄 (푥)
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Case  휑 = 푥 < 푦
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Case  휑 = 푥 ∈ 푋
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Case  휑 = ¬휓
• Then 푓푟푒푒 휑 = 푓푟푒푒(휓) . By i.h. 퐿 휓 is regular.
• 퐿 휑 is equal to 퐿 휓 minus the words that do not encode any 

implementation („the garbage“).
• Equivalently, 퐿 휑 is equal to the intersection of 퐿 휓 and the 

encodings of all interpretations of 휓.
• We show that the set of these encodings is regular.

– Condition for encoding: Let 푥 be a free first-oder variable of 
휓	. The projection of an encoding onto 푥 must belong to 
0∗10∗ (because it represents one position). 

– So we just need an automaton for the words satisfying this 
condition for every free first-order variable.
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Example: 푓푟푒푒 휑 = {푥,푦}
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Case  휑 = 휑 ∨ 휑
• Then 푓푟푒푒 휑 = 푓푟푒푒 휑 ∪ 푓푟푒푒 휑 . By i.h. 퐿 휑

and 퐿 휑 	are regular.
• If 푓푟푒푒 휑 = 푓푟푒푒 휑 then 퐿 휑 = 퐿 휑 ∪ 퐿(휑 )

and so 퐿 휑 is regular.
• If 푓푟푒푒 휑 ≠ 푓푟푒푒 휑 then we extend 퐿 휑 to a 

language  퐿 	encoding all interpretations of 
푓푟푒푒 휑 ∪ 푓푟푒푒 휑 whose projection onto 
푓푟푒푒 휑 belongs to 퐿 휑 . Similarly we extend 
퐿 휑 to 퐿 . We have
 퐿 and 퐿 are regular.
 퐿 휑 = 퐿 ∪ 퐿 .
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Example: 휑 = 푄 푥 ∨ 푄_푏(푦)
• 퐿 contains the encodings of all 

interpretations (푤, 푥	 ⟼ 푛 , 푦 ⟼ 푛 ) such 
that the encoding of (푤, 푥	 ⟼ 푛 ) belongs 
to 퐿 푄 푥 .

• Automata for 퐿 푄 푥 and 퐿 :
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• Then  푓푟푒푒(휑)= 푓푟푒푒 휓 		⃥	{푥} or  푓푟푒푒(휑)=
푓푟푒푒 휓 		⃥	{푋}

• By i.h. 퐿(휓) is regular. 
• 퐿 휑 is the result of projecting 퐿(휓) onto the 

components for 푓푟푒푒 휓 		⃥	{푥} or 
푓푟푒푒 휓 		⃥	 푋 .

Cases  휑 = ∃푥	휓 and 휑 = ∃푋	휓
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• Automata for  푄 푥 and   ∃푥	푄 푥

Example: 휑 = 푄 푥
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The mega-example
• We compute an automaton for

• First we rewrite 휑 into

• In the next slides we 
1. compute a DFA for 푙푎푠푡 푥
2. compute DFAs for ∃푥	(푙푎푠푡 푥 ∧ 푄 푥 ) and 

¬∃푥	(¬푙푎푠푡 푥 ∧ ¬푄 푥 )
3. compute a DFA for the complete formula.

• We denote the DFA for a formula 휓 by [휓].
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[푙푎푠푡 푥 ]
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[∃푥	 푙푎푠푡 푥 ∧ 푄 푥 ]
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[¬푄 푥 ]

[푄 푥 ]
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[¬∃푥	 ¬푙푎푠푡 푥 ∧ ¬푄 푥 ]
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[∃푥	 푙푎푠푡 푥 ∧ 푄 푥
∧ ¬∃푥	 ¬푙푎푠푡 푥 ∧ ¬푄 푥 ]
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