2. Implementing Boolean Operations for Büchi Automata

2 Implementing Boolean Operations for Büchi Automata
393/431
LEA

Intersection of NBAs

- The algorithm for NFAs does not work ...

Solution

Apply the same idea as in the conversion NGA \Rightarrow NBA 1. Take two copies of the pairing $\left[A_{1}, A_{2}\right]$.

Solution

Apply the same idea as in the conversion NGA \Rightarrow NBA

1. Take two copies of the pairing $\left[A_{1}, A_{2}\right]$.
2. Redirect transitions of the first copy leaving F_{1} to the second copy.

Solution

Apply the same idea as in the conversion NGA \Rightarrow NBA

1. Take two copies of the pairing $\left[A_{1}, A_{2}\right]$.
2. Redirect transitions of the first copy leaving F_{1} to the second copy.
3. Redirect transitions of the second copy leaving F_{2} to the second copy.

Solution

Apply the same idea as in the conversion NGA \Rightarrow NBA

1. Take two copies of the pairing $\left[A_{1}, A_{2}\right]$.
2. Redirect transitions of the first copy leaving F_{1} to the second copy.
3. Redirect transitions of the second copy leaving F_{2} to the second copy.
4. Set F to the set F_{1} in the first copy.

IntersNBA $\left(A_{1}, A_{2}\right)$

Input: NBAs $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right), A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)$
Output: NBA $A_{1} \cap_{\omega} A_{2}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with $L_{\omega}\left(A_{1} \cap_{\omega} A_{2}\right)=L_{\omega}\left(A_{1}\right) \cap L_{\omega}\left(A_{2}\right)$
$1 Q, \delta, F \leftarrow \emptyset$
$2 q_{0} \leftarrow\left[q_{01}, q_{02}, 1\right]$
$W \leftarrow\left\{\left[q_{01}, q_{02}, 1\right]\right\} \quad 9$
4 while $W \neq 0$ do
pick $\left[q_{1}, q_{2}, i\right]$ from $W \quad 11$
6 add $\left[q_{1}, q_{2}, i\right]$ to Q^{\prime}
7 if $q_{1} \in F_{1}$ and $i=1$ then add $\left[q_{1}, q_{2}, 1\right]$ to $F^{\prime} 12$

```
for all }a\in\Sigma\mathrm{ do
    for all }\mp@subsup{q}{1}{\prime}\in\mp@subsup{\delta}{1}{}(\mp@subsup{q}{1}{},a),\mp@subsup{q}{2}{\prime}\in\delta(\mp@subsup{q}{2}{},a) d
            if i=1 and q}\mp@subsup{q}{1}{}\not\in\mp@subsup{F}{1}{}\mathrm{ then
            add ([\mp@subsup{q}{1}{},\mp@subsup{q}{2}{},1],a,[\mp@subsup{q}{1}{\prime},\mp@subsup{q}{2}{\prime},1]) to }
            if [\mp@subsup{q}{1}{\prime},\mp@subsup{q}{2}{\prime},1]\not\inQ\mp@subsup{Q}{}{\prime}\mathrm{ then add [q},\mp@code{1},\mp@subsup{q}{2}{\prime},1] to W
        if i=1 and }\mp@subsup{q}{1}{}\in\mp@subsup{F}{1}{}\mathrm{ then
            add ([\mp@subsup{q}{1}{},\mp@subsup{q}{2}{},1],a,[\mp@subsup{q}{1}{\prime},\mp@subsup{q}{2}{\prime},2]) to }
            if [\mp@subsup{q}{1}{\prime},\mp@subsup{q}{2}{\prime},2]\not\inQ\mp@subsup{Q}{}{\prime}\mathrm{ then add [q}\mp@subsup{q}{1}{\prime},\mp@subsup{q}{2}{\prime},2] to W
            if i=2 and q}\mp@subsup{q}{2}{}\not\in\mp@subsup{F}{2}{}\mathrm{ then
            add ([\mp@subsup{q}{1}{},\mp@subsup{q}{2}{},2],a,[\mp@subsup{q}{1}{\prime},\mp@subsup{q}{2}{\prime},2]) to }
            if [q},\mp@code{\prime},\mp@subsup{q}{2}{\prime},2]\not\in\mp@subsup{Q}{}{\prime}\mathrm{ then add [q}\mp@subsup{q}{1}{\prime},\mp@subsup{q}{2}{\prime},2] to 
            if }i=2\mathrm{ and }\mp@subsup{q}{2}{}\in\mp@subsup{F}{2}{}\mathrm{ then
            add ([\mp@subsup{q}{1}{},\mp@subsup{q}{2}{},2],a,[\mp@subsup{q}{1}{\prime},\mp@subsup{q}{2}{\prime},1]) to }
            if [\mp@subsup{q}{1}{\prime},\mp@subsup{q}{2}{\prime},1]\not\inQ'\mp@code{Qhen add [q}\mp@subsup{q}{1}{\prime},\mp@subsup{q}{2}{\prime},1] to W
return (Q,\Sigma,\delta,q0,F)
```


Special cases/improvements

- If all states of at least one of A_{1} and A_{2} are accepting, the algorithm for NFAs works.
- Intersection of NBAs $A_{1}, A_{2}, \ldots, A_{k}$
- Do NOT apply the algorithm for two NBAs ($k-1$) times.
- Proceed instead as in the translation NGA \Rightarrow NBA: take k copies of $\left[A_{1}, A_{2}, \ldots, A_{k}\right]$ ($k n_{1} \ldots n_{k}$ states instead of $2^{k} n_{1} \ldots n_{k}$)

Complement

- M ain result proved by Büchi: NBAs are closed under complement.
- M any later improvements in recent years.
- Construction radically different from the one for NFAs.

Problems

- The powerset construction does not work.

- Exchanging final and non-final states in DBAs also fails.

Solution

- Extend the idea used to determinize co-Büchi automata with a new component.
- Recall: a NBA accepts a word w iff some path of $\operatorname{dag}(w)$ visits final states infinitely often.
- Goal: given NBA A, construct NBA \bar{A} such that:

A rejects w
 iff

no path of $\operatorname{dag}(w)$ visits accepting states of A i.o. iff
some run of \bar{A} visits accepting states of \bar{A} i.o.
iff
\bar{A} accepts w

Running example

Rankings

- M appings that associate to every node of dag(w) a rank (a natural number) such that
- ranks never increase along a path, and
- ranks of accepting nodes are even.

Odd rankings

- A ranking is odd if every infinite path of $\operatorname{dag}(w)$ visits nodes of odd rank i.o.

Prop.: no path of $\operatorname{dag}(w)$ visits accepting states of A i.o. iff
$\operatorname{dag}(w)$ has an odd ranking
Proof: Ranks along infinite paths eventually reach a stable rank.
(\leftarrow) : The stable rank of every path is odd. Since accepting nodes have even rank, no path visits accepting nodes i.o. (\rightarrow) : We construct a ranking satisfying the conditions. Give each accepting node $\langle q, l\rangle$ rank $2 k$, where k is the maximal number of accepting nodes in a path starting at $\langle q, l\rangle$.
Give a non-accepting node $\langle q, l\rangle$ rank $2 k+1$, where $2 k$ is the maximal even rank among its descendants.

- Goal:
A rejects w
iff
$\operatorname{dag}(w)$ has an odd ranking
iff
some run of \bar{A} visits accepting states of \bar{A} i.o.
iff
\bar{A} accepts w
- Idea: design \bar{A} so that
- its runs on w are the rankings of $\operatorname{dag}(w)$, and
- its acceptings runs on w are the odd rankings of $\operatorname{dag}(w)$.

Representing rankings

Representing rankings

Representing rankings

- We can determine if $\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right] \xrightarrow{l}\left[\begin{array}{l}n_{1}^{\prime} \\ n_{2}^{\prime}\end{array}\right]$ may appear in a ranking by just looking at $n_{1}, n_{2}, n_{1}^{\prime}, n_{2}^{\prime}$ and l : ranks should not increase.

First draft for \bar{A}

- For a two-state A (more states analogous):
- States: all $\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right]$ where accepting states get even rank
- Initial states: all states of the form $\left[\begin{array}{c}n_{1} \\ \perp\end{array}\right]$
- Transitions: all $\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}n_{1}^{\prime} \\ n_{2}^{\prime}\end{array}\right]$ s.t . ranks don't increase
- The runs of the automaton on a word w correspond to all the rankings of $\operatorname{dag}(w)$.
- Observe: \bar{A} is a NBA even if A is a DBA, because there are many rankings for the same word.

Problems to solve

- How to choose the accepting states?
- They should be chosen so that a run is accepted iff its corresponding ranking is odd.
- Potentially infinitely many states (because rankings can contain arbitrarily large numbers)

