
Solving the first problem

• We use owing states and breakpoints again:
– A breakpoint of a ranking is now a level of the 

ranking such that no state of the level owes a visit 
to a node of odd rank.

– We have again: a ranking is odd iff it has infinitely 
many breakpoints.

– We enrich the state with a set of owing states, and 
choose the accepting states as those in which the 
set is empty. 
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Owing states

2
⊥ → 1

2 → 1
⊥ → 1

0 → 1
0 	…	

{푞 } {푞 } ∅ {푞 } ∅

AFS 2 Implementing Boolean Operations for Büchi Automata 415/431
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Owing rankings

1
⊥ → 1

0 → 0
⊥ → 0

0 → 0
⊥ …	

∅ {푞 } {푞 } {푞 , 푞 } {푞 }
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• For a two-state 퐴	(the case of more states is 
analogous): 

– States: all pairs  
푛
푛 ,푂 wher accepting states get 

even rank, and  푂 is set of owing states (of even rank)

– Initial states: all  
푛
⊥ , {푞 } where 푛 even if 푞

accepting.

– Transitions: all  
푛
푛 ,푂	→ 푛

푛 ,푂′ s.t. ranks don‘t 

increase and owing states are correctly updated

– Final states: all states 
푛
푛 ,∅

Second draft for 퐴̅
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• The runs of 퐴̅ on a word 푤 correspond to all 
the rankings of 푑푎푔 푤 .

• The accepting runs of 퐴̅ on a word 푤
correspond to all the odd rankings of 
푑푎푔 푤 .

• Therefore: 	퐿 퐴̅ = 퐿(퐴)		
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Solving the second problem
Proposition: If 푤 is rejected by 퐴, then 푑푎푔(푤)	has an odd 
ranking in which ranks are taken from the range 0,2푛 , 
where 푛 is the number of states of 퐴.  Further, the initial 
node gets rank 2푛.
Proof: We construct such a ranking as follows:

• we proceed in 푛 + 1 rounds (from round 0 to round 푛), each 
round  with two steps 푘. 0 and 푘. 1 with the exception of 
round 푛 which only has 푛. 0

• each step removes a set of nodes together with all its  
descendants. 

• the nodes removed at step 푖. 푗 get rank 2푖 + 푗
• the rank of the initial node is increased to 2푛 if necessary 

(preserves the properties of rankings).
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The steps
• Step 푖. 0 : remove all nodes having only finitely 

many successors.
• Step 푖. 1 : remove nodes that are non-accepting 

and have no accepting descendants 

• This immediately guarantees : 
1. Ranks along a path cannot increase.
2. Accepting states get even ranks, because they can 

only be removed at step 푖. 0
• It remains to prove: no nodes left after 푛 + 1

rounds .
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• To prove: no nodes left after n rounds .
• Each level of a dag has a width

• We define the width of a dag as the largest level 
width that appears infinitely often.

• Each round decreases the width of the dag by at 
least 1.

• Since the intial width is at most 푛 after at most 푛
rounds the width is 0, and then step 푛. 0 removes all 
nodes.
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• For a two-state 퐴	(the case of more states is 
analogous): 

– States: all pairs  
푛
푛 ,푂 where 푂 set of owing 

states and accepting states get even rank

– Initial state: all   2푛
⊥ , {푞 }

– Transitions: all  
푛
푛 ,푂	→ 푛

푛 ,푂′ s.t. ranks don‘t 

increase and owing states are correctly updated

– Final states: all states 
푛
푛 ,∅

Final 퐴̅
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An example

• We construct the complements of 
퐴 = ( 푞 , 푎 , 훿, 푞 , 푞 ) with 훿 푞,푎 = {푞}
퐴 = ( 푞 , 푎 , 훿, 푞 ,∅) with 훿 푞,푎 = {푞}

• States of 퐴 :
0,∅ , 2,∅ , 0, {푞} , 2, {푞}

• States of 퐴 :
0,∅ , 1,∅ , 2,∅ , 0, {푞} , 2, {푞}

• Initial state of 퐴 and 퐴 : 2, {푞}
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c©je/ewm



An example

• Transitions of 퐴 :
2, {푞} → 2, {푞} 	, 2, {푞} → 0,∅ , 0, {푞} → 0, {푞}

• Transitions of 퐴 :
2, {푞} → 2, {푞} 	, 2, {푞} → 1,∅ , 2, {푞} → 0,∅ ,	

1,∅ → 1,∅ , 1,∅ → 0, {푞} ,
0, {푞} → 0, {푞}

• Final states of 퐴 : 0,∅ , 2,∅ (unreachable)
• Final states of 퐴 : 0,∅ , 1,∅ , 2,∅ (only 1,∅ is 

reachable)
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Complexity

• A state consists of a level of a ranking and a 
set of owing states.

• A level assigns to each state a number f [0,2푛]
or the symbol ⊥.

• So the complement NBA has at most 
2푛 + 2 ∙ 2 ∈ 푛 = 2 states. 

• Compare with 2 for the NFA case.
• We show that the log 푛 factor is unavoidable.
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We define a family 퐿 of 휔-languages s.t.
– 퐿 is accepted by a NBA with 푛 + 2 states.
– Every NBA accepting 퐿 has at least 푛! ∈ 2

states.

• The alphabet of 퐿 is Σ = {1,2, … ,푛, #}.
• Assign to a word 푤 ∈ Σ a graph 퐺(푤) as 

follows:
– Vertices: the numbers 1,2, … ,푛 .
– Edges: there is an edge 푖 → 푗 iff w contains infinitely 

many occurrences of 	푖푗.
• Define: 푤 ∈ 퐿 iff 퐺(푤) has a cycle.
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• 퐿 is accepted by a NBA with 푛 + 2 states.
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Every NBA accepting 퐿 has at least 푛! ∈
2 states.
• Let 휏 denote a permutation of 1,2, … ,푛 .
• We have:

a) For every 휏, the word	 휏	# belongs to 퐿 (i.e., 
its graph contains no cycle).

b) For every two distinct  휏 , 휏 , every word 
containing  inf. many occurrences of 휏 and inf. 
many occurrences of 휏 belongs to 퐿 .
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Every NBA accepting 퐿 has at least 푛! ∈
2 states.
• Assume 퐴 recognizes 퐿 and let 휏 , 휏 distinct. 

By (a), 퐴 has runs 휌 , 휌 	accepting	 휏_1	# , 
휏 	# .  The sets of accepting states visited 

i.o. by 휌 , 휌 are disjoint.
– Otherwise we can ``interleave‘‘휌 ,휌 to yield an 

acepting run for a word with inf. Many occurrences 
of 휏 , 휏 , contradicting (b).

• So 퐴 has at least one accepting state for each 
permutation, and so at least 푛!	States.
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