
Solving the first problem

• We use owing states and breakpoints again:
– A breakpoint of a ranking is now a level of the

ranking such that no state of the level owes a visit
to a node of odd rank.

– We have again: a ranking is odd iff it has infinitely
many breakpoints.

– We enrich the state with a set of owing states, and
choose the accepting states as those in which the
set is empty.

AFS 2 Implementing Boolean Operations for Büchi Automata 414/431
c©je/ewm

Owing states

2
⊥ → 1

2 → 1
⊥ → 1

0 → 1
0 	…	

{푞 } {푞 } ∅ {푞 } ∅

AFS 2 Implementing Boolean Operations for Büchi Automata 415/431
c©je/ewm

Owing rankings

1
⊥ → 1

0 → 0
⊥ → 0

0 → 0
⊥ …	

∅ {푞 } {푞 } {푞 , 푞 } {푞 }

AFS 2 Implementing Boolean Operations for Büchi Automata 416/431
c©je/ewm

• For a two-state 퐴	(the case of more states is
analogous):

– States: all pairs
푛
푛 ,푂 wher accepting states get

even rank, and 푂 is set of owing states (of even rank)

– Initial states: all
푛
⊥ , {푞 } where 푛 even if 푞

accepting.

– Transitions: all
푛
푛 ,푂	→ 푛

푛 ,푂′ s.t. ranks don‘t

increase and owing states are correctly updated

– Final states: all states
푛
푛 ,∅

Second draft for 퐴̅

AFS 2 Implementing Boolean Operations for Büchi Automata 417/431
c©je/ewm

• The runs of 퐴̅ on a word 푤 correspond to all
the rankings of 푑푎푔 푤 .

• The accepting runs of 퐴̅ on a word 푤
correspond to all the odd rankings of
푑푎푔 푤 .

• Therefore: 	퐿 퐴̅ = 퐿(퐴)		

AFS 2 Implementing Boolean Operations for Büchi Automata 418/431
c©je/ewm

Solving the second problem
Proposition: If 푤 is rejected by 퐴, then 푑푎푔(푤)	has an odd
ranking in which ranks are taken from the range 0,2푛 ,
where 푛 is the number of states of 퐴. Further, the initial
node gets rank 2푛.
Proof: We construct such a ranking as follows:

• we proceed in 푛 + 1 rounds (from round 0 to round 푛), each
round with two steps 푘. 0 and 푘. 1 with the exception of
round 푛 which only has 푛. 0

• each step removes a set of nodes together with all its
descendants.

• the nodes removed at step 푖. 푗 get rank 2푖 + 푗
• the rank of the initial node is increased to 2푛 if necessary

(preserves the properties of rankings).

AFS 2 Implementing Boolean Operations for Büchi Automata 419/431
c©je/ewm

The steps
• Step 푖. 0 : remove all nodes having only finitely

many successors.
• Step 푖. 1 : remove nodes that are non-accepting

and have no accepting descendants

• This immediately guarantees :
1. Ranks along a path cannot increase.
2. Accepting states get even ranks, because they can

only be removed at step 푖. 0
• It remains to prove: no nodes left after 푛 + 1

rounds .

AFS 2 Implementing Boolean Operations for Büchi Automata 420/431
c©je/ewm

AFS 2 Implementing Boolean Operations for Büchi Automata 421/431
c©je/ewm

• To prove: no nodes left after n rounds .
• Each level of a dag has a width

• We define the width of a dag as the largest level
width that appears infinitely often.

• Each round decreases the width of the dag by at
least 1.

• Since the intial width is at most 푛 after at most 푛
rounds the width is 0, and then step 푛. 0 removes all
nodes.

AFS 2 Implementing Boolean Operations for Büchi Automata 422/431
c©je/ewm

• For a two-state 퐴	(the case of more states is
analogous):

– States: all pairs
푛
푛 ,푂 where 푂 set of owing

states and accepting states get even rank

– Initial state: all 2푛
⊥ , {푞 }

– Transitions: all
푛
푛 ,푂	→ 푛

푛 ,푂′ s.t. ranks don‘t

increase and owing states are correctly updated

– Final states: all states
푛
푛 ,∅

Final 퐴̅

AFS 2 Implementing Boolean Operations for Büchi Automata 423/431
c©je/ewm

An example

• We construct the complements of
퐴 = (푞 , 푎 , 훿, 푞 , 푞) with 훿 푞,푎 = {푞}
퐴 = (푞 , 푎 , 훿, 푞 ,∅) with 훿 푞,푎 = {푞}

• States of 퐴 :
0,∅ , 2,∅ , 0, {푞} , 2, {푞}

• States of 퐴 :
0,∅ , 1,∅ , 2,∅ , 0, {푞} , 2, {푞}

• Initial state of 퐴 and 퐴 : 2, {푞}

AFS 2 Implementing Boolean Operations for Büchi Automata 424/431
c©je/ewm

An example

• Transitions of 퐴 :
2, {푞} → 2, {푞} 	, 2, {푞} → 0,∅ , 0, {푞} → 0, {푞}

• Transitions of 퐴 :
2, {푞} → 2, {푞} 	, 2, {푞} → 1,∅ , 2, {푞} → 0,∅ ,	

1,∅ → 1,∅ , 1,∅ → 0, {푞} ,
0, {푞} → 0, {푞}

• Final states of 퐴 : 0,∅ , 2,∅ (unreachable)
• Final states of 퐴 : 0,∅ , 1,∅ , 2,∅ (only 1,∅ is

reachable)

AFS 2 Implementing Boolean Operations for Büchi Automata 425/431
c©je/ewm

AFS 2 Implementing Boolean Operations for Büchi Automata 426/431
c©je/ewm

Complexity

• A state consists of a level of a ranking and a
set of owing states.

• A level assigns to each state a number f [0,2푛]
or the symbol ⊥.

• So the complement NBA has at most
2푛 + 2 ∙ 2 ∈ 푛 = 2 states.

• Compare with 2 for the NFA case.
• We show that the log 푛 factor is unavoidable.

AFS 2 Implementing Boolean Operations for Büchi Automata 427/431
c©je/ewm

We define a family 퐿 of 휔-languages s.t.
– 퐿 is accepted by a NBA with 푛 + 2 states.
– Every NBA accepting 퐿 has at least 푛! ∈ 2

states.

• The alphabet of 퐿 is Σ = {1,2, … ,푛, #}.
• Assign to a word 푤 ∈ Σ a graph 퐺(푤) as

follows:
– Vertices: the numbers 1,2, … ,푛 .
– Edges: there is an edge 푖 → 푗 iff w contains infinitely

many occurrences of 	푖푗.
• Define: 푤 ∈ 퐿 iff 퐺(푤) has a cycle.

AFS 2 Implementing Boolean Operations for Büchi Automata 428/431
c©je/ewm

• 퐿 is accepted by a NBA with 푛 + 2 states.

AFS 2 Implementing Boolean Operations for Büchi Automata 429/431
c©je/ewm

Every NBA accepting 퐿 has at least 푛! ∈
2 states.
• Let 휏 denote a permutation of 1,2, … ,푛 .
• We have:

a) For every 휏, the word	 휏	# belongs to 퐿 (i.e.,
its graph contains no cycle).

b) For every two distinct 휏 , 휏 , every word
containing inf. many occurrences of 휏 and inf.
many occurrences of 휏 belongs to 퐿 .

AFS 2 Implementing Boolean Operations for Büchi Automata 430/431
c©je/ewm

Every NBA accepting 퐿 has at least 푛! ∈
2 states.
• Assume 퐴 recognizes 퐿 and let 휏 , 휏 distinct.

By (a), 퐴 has runs 휌 , 휌 	accepting	 휏_1	# ,
휏 	# . The sets of accepting states visited

i.o. by 휌 , 휌 are disjoint.
– Otherwise we can ``interleave‘‘휌 ,휌 to yield an

acepting run for a word with inf. Many occurrences
of 휏 , 휏 , contradicting (b).

• So 퐴 has at least one accepting state for each
permutation, and so at least 푛!	States.

AFS 2 Implementing Boolean Operations for Büchi Automata 431/431
c©je/ewm

