Technische Universität München
Fakultät für Informatik
Lehrstuhl für Effiziente Algorithmen
Prof. Dr. Harald Räcke
Chintan Shah, Dario Frascaria
\qquad

Effiziente Algorithmen und Datenstrukturen I

General Information for the Examination

- Please keep your identity card readily available.
- Do not use pencils. Do not write in red or green ink.
- You are not allowed to use anything except a single sided handwritten A4 paper.
- Verify that you have received 16 printed sides (check page numbers).
- Attempt all questions. You have 150 minutes to answer the questions.
Left Examination Hall from to / from to
Submitted Early at

Special Notes:

	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	Σ	Examiner
Max.	3	3	2	3	4	3	7	4	5	6	40	
$1^{\text {st }}$												
$2^{\text {nd }}$												

Question 1 (3 Points)

(a) Give the generating function of the sequence $a_{n}=n+1$.
(b) Show that $2^{n} \in o\left(3^{n}\right)$.
(c) Solve the following recurrence: $T(n)=2 T\left(\frac{n}{4}\right)+\sqrt{n}$

Question 2 (3 Points)

For constants $c, \epsilon>0$ and $k>1$, arrange the following functions of n in non-decreasing asymptotic order so that $f_{i}(n)=O\left(f_{i+1}(n)\right)$ for two consecutive functions in your sequence. Also indicate whether $f_{i}(n)=\Theta\left(f_{i+1}(n)\right)$ holds or not.

$$
\log (n!), n^{k+\epsilon}, n, n^{k}(\log n)^{c}, n \log \log n, n \log \left(n^{2}\right)
$$

Question 3 (2 Points)

(a) Suppose you have an addressable minheap which supports the following operations:
(i) handle INSERT(element x)
(ii) element DELETE-MIN()
(iii) void CHANGE-PRIORITY(handle h, new-priority)

How could you combine these operations to define a DELETE(handle h) operation?
(b) Suppose you have an addressable minheap which supports the following operations:
(i) handle INSERT(element x)
(ii) element DELETE-MIN()
(iii) void DELETE(handle h)

How could you combine these operations to define a CHANGE-PRIORITY(handle h, new-priority) operation?

Question 4 (3 Points)

A sequence of n operations is performed on a data structure which supports a single operation. The i-th call of this operation costs i if i is an exact power of 2 , and 1 otherwise. Determine the amortized cost per operation.

Question 5 (4 Points)

The H-graph of order 0 is just a single node. The H-graphs of order $1,2,3$, and 4 are depicted in Figure 1, Figure 2, Figure 3, and Figure 4, respectively. Let $f(\ell)$ denote the number of vertices of an H-graph of order ℓ. Develop a recurrence relation for f and solve your relation using techniques from the lecture.

Abbildung 1: An H-graph of order 1

Abbildung 3: An H-graph of order 3

Abbildung 2: An H-graph of order 2

Abbildung 4: An H-graph of order 4

Question 6 (3 Points)

Access the characters g, c, e sequentially in the following splay tree and update the splay tree after each access.

Question 7 (7 Points)

Consider a BST in which each node v contains a key as well as an additional value called addend. The addend of a node v is implicitly added to all keys in the subtree rooted at v. Let (key, addend) denote the contents of any node v. For example, the following tree contains the elements 5, 6, 7 :

(a) In the following tree, write the key value of each node, e.g., the root has key value 10 .
(1 point)

(b) Let h be the height of a tree as defined above. Describe how to perform the following operations in $O(h)$ time:

- $\operatorname{FIND}(\mathrm{x}, \mathrm{T})$: return YES if element x is stored in tree T.
- INSERT(x,T): inserts element x in tree T.
- $\operatorname{PUSH}(\mathrm{x}, \mathrm{k}, \mathrm{T}):$ add k to all elements $\geq x$.
(c) Describe how it can be insured that $h=O(\log n)$ during the above operations.
(Hint: Show how to perform a rotation.)

Question 8 (4 Points)

Let $G=(V, E)$ be a bipartite graph where $V=L \uplus R$. You are given a maximum matching M in G.
(a) G^{\prime} is obtained by adding an edge $e=\left(\ell_{a}, r_{b}\right)$ to G, where $\ell_{a} \in L$ and $r_{b} \in R$. Find a maximum matching in G^{\prime} in $O(V+E)$ time.
(b) G^{\prime} is obtained by removing an edge $e=\left(\ell_{a}, r_{b}\right) \in E$ from G. Find a maximum matching in G^{\prime} in $O(V+E)$ time.

Question 9 (5 Points)

A game is played as follows. Two players alternately select distinct vertices $v_{1}, v_{2}, \ldots, v_{n}$ of a graph G, where, for $i>0, v_{i+1}$ is required to be adjacent to v_{i}. The last player able to select a vertex wins the game. Show that the first player has a winning strategy if and only if G has no perfect matching.

Question 10 (6 Points)

A rental company uses cars which it leases from manufacturers. The company has a requirement of cars for the next 6 months as follows:

Month	Mar.	Apr.	May	June	July	Aug.
Vehicles Required	43	41	44	39	42	45

The company can lease cars for the following costs and lengths of time: a 3-month lease for $€ 1700$, a 4-month lease for $€ 2200$, a 5 -month lease for $€ 2600$. The company can undertake a lease beginning in any month. On March 1 the company has 20 cars on lease, all of which go off lease at the end of April. Formulate the problem of determining the most economical leasing policy as a mincost flow problem.

ROUGH WORK

ROUGH WORK

