Efficient Algorithms and Datastructures I

Question 1 (10 Points)

The mean M of a set of k integers $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is defined as

$$
M=\frac{1}{k} \sum_{i=1}^{k} x_{i} .
$$

We want to maintain a data structure D on a set of integers under the normal INIT, INSERT, DELETE, and FIND operations, as well as a MEAN operation, defined as follows:

1. $\operatorname{INIT}(D)$: Create an empty structure D.
2. $\operatorname{INSERT}(D, x)$: Insert x in D.
3. $\operatorname{DELETE}(D, x)$: Delete x from D.
4. $\operatorname{FIND}(D, x)$: Return pointer to x in D.
5. $\operatorname{MEAN}(D, a, b)$: Return the mean of the set consisting of elements x in D with $a \leq x \leq b$.

Describe how to modify a standard red-black tree in order to implement D, such that INIT is supported in $O(1)$ time and INSERT, DELETE, FIND, and MEAN are supported in $O(\log n)$ time.

Question 2 (10 Points)

Prove that there exists a sequence of n insert and delete operations on a (2,3)-tree s.t. the total number of split and merge operations performed is $\Omega(n \log n)$.

Question 3 (10 Points)

Carry out the following operations sequentially on the $(2,4)$ tree shown below so that it remains a $(2,4)$ tree and show what the tree looks like after each operation(always carry out each operation on the result of the previous operation):

1. Insert(4)
2. Delete(3)
3. Delete(1)

Question 4 (10 Points)

In double hashing, if we use the hash function $h(k, i)=\left(h_{1}(k)+i h_{2}(k)\right) \bmod m$, show that when m and $h_{2}(k)$ have greatest common divisor $d \geq 1$ for some key k, then an unsuccessful search for key k examines $\frac{1}{d}$ th of the hash table before returning to slot $h_{1}(k)$.
(Note: When $d=1$, i.e. when m and $h_{2}(k)$ are relatively prime, the search may examine the entire hash table.)

